Issues

 / 

2024

 / 

November

  

55th anniversary of the Institute of Spectroscopy of the Russian Academy of Sciences (ISAN). Reviews of topical problems


Optical methods for detection of single biomolecules: visualization, sensorics, sequencing of DNA molecules

  a,  a,  a,  a,  a,  a,  a,  b,  b,  b,  b,  c,  c,  d,  d,  d,  d,  e,  e,  e,  e,  f,  g,  g,  g,  g,  b, g
a Institute of Spectroscopy, Russian Academy of Sciences, ul. Fizicheskaya 5, Troitsk, Moscow, 108840, Russian Federation
b Institute of Analytical Instrumentation, Russian Academy of Sciences, Petrodvorets, St. Petersburg, Russian Federation
c Dukhov Research Institute of Automatics, ul. Sushchevskaya 22, Moscow, 119017, Russian Federation
d Bauman Moscow State Technical University, ul. 2-ya Baumanskaya 5/1, Moscow, 105005, Russian Federation
e Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russian Federation
f Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Prosp. Entuziastov 13, Saratov, 410049, Russian Federation
g Syntol Ltd., Timiryazevskaya str. 42, Bldg B, room 316, Moscow, 127434, Russian Federation

A brief overview of the state of the art in optical methods for detecting a single molecule in biomedical applications is presented. It is shown that the registration of fluorescence of single dye molecules covalently bound to antibodies (biomolecules), together with the use of modern nanophotonics methods, can be used to solve various problems in biology and medicine: visualization of biomolecules, toxins, and virus particles; determination of extremely low concentrations of analytes directly in a sample without using methods for increasing the analyte concentration; and optical single-molecule sequencing of DNA molecules. The existing physical limitations of the methods of optical detection and counting of single molecules and their impact on solving existing problems in biology, medicine, and genetics are discussed.

Fulltext pdf (7 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2024.07.039720
Correspondence should be addressed to  melentiev@isan.troitsk.ru
Keywords: nanophotonics, nanoplasmonics, sensorics of ultra-low concentrations of analytes, detection of single molecules, biovisual„ization, zero-mode waveguides, single-molecule sequencing
PACS: 07.60.−j, 32.50.+d, 87.64.−t (all)
DOI: 10.3367/UFNe.2024.07.039720
URL: https://ufn.ru/en/articles/2024/11/c/
Citation: Melentiev P N, Kalmykov A S, Gritchenko A S, Shemeteva M P, Safonova A M, Markov M S, Balykin V I, Bukatin A S, Vaulin N V, Belov D A, Evstrapov A A, Baklykov D A, Andriyash A V, Barbasheva A A, Kuguk A K, Ryzhkov V V, Rodionov I A, Kudryavtsev D S, Mozhaeva V A, Son L V, Tsetlin V I, Khlebtsov B N, Kobzev M S, Kuznetsova Yu O, Sharipov B T, Yashkin A S, Alekseev Ya I "Optical methods for detection of single biomolecules: visualization, sensorics, sequencing of DNA molecules" Phys. Usp. 67 1069–1083 (2024)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 13th, March 2024, revised: 16th, July 2024, 17th, July 2024

Оригинал: Мелентьев П Н, Калмыков А С, Гритченко А С, Шеметева М П, Сафонова А М, Марков М С, Балыкин В И, Букатин А С, Ваулин Н В, Белов Д А, Евстрапов А А, Баклыков Д А, Андрияш А В, Барбашева А А, Кугук А К, Рыжков В В, Родионов И А, Кудрявцев Д С, Можаева В А, Сон Л В, Цетлин В И, Хлебцов Б Н, Кобзев М С, Кузнецова Ю О, Шарипов Б Т, Яшкин А С, Алексеев Я И «Оптические методы детектирования единичных биомолекул: визуализация, сенсорика, секвенирование молекул ДНК» УФН 194 1130–1145 (2024); DOI: 10.3367/UFNr.2024.07.039720

References (87) ↓ Similar articles (1)

  1. Nayak K P et al Opt. Express 15 5431 (2007)
  2. Akimov A V et al Nature 450 402 (2007)
  3. Xie X S, Dunn R C Science 265 361 (1994)
  4. Rossier J F Nature Mater. 12 480 (2013)
  5. Wallquist M et al Phys. Scr. 2009 (T137) 014001 (2009)
  6. Koch J et al Phys. Rev. B 70 195107 (2004)
  7. Hugel T et al Science 296 1103 (2002)
  8. Ritter J G et al PLoS ONE 5 (7) e11639 (2010)
  9. Liu Z, Lavis L D, Betzig E Mol. Cell 58 644 (2015)
  10. Yanagida T, Ishii Y (Eds) Single Molecule Dynamics In Life Science (Weinheim: Wiley-VCH Verlag, 2008)
  11. Levi V, Gratton E Cell Biochem. Biophys. 48 1 (2007)
  12. Goodhill G J Trends Neurosci. 39 (4) 202 (2016)
  13. Zlatanova J, van Holde K Mol. Cell 24 317 (2006)
  14. Miller H et al Rep. Prog. Phys. 81 024601 (2018)
  15. Lu H P, Xun L, Xie X S Science 282 1877 (1998)
  16. Liang W et al Nature 417 725 (2002)
  17. Todd J et al Clin. Chem. 53 1990 (2007)
  18. Ma F et al Acc. Chem. Res. 49 1722 (2016)
  19. Taylor A B, Zijlstra P ACS Sensors 2 1103 (2017)
  20. Walt D R Anal. Chem. 85 1258 (2013)
  21. Upasham S, Tanak A, Prasad S Adv. Health Care Technol. 4 1 (2018)
  22. Moerner W E J. Phys. Chem. B 106 910 (2002)
  23. Balykin V I et al JETP Lett. 26 357 (1977); Balykin V I et al Pis’ma Zh. Eksp. Teor. Fiz. 26 492 (1977)
  24. Personov R I et al Sov. Phys. JETP 38 912 (1974); Personov R I et al Zh. Eksp. Teor. Fiz. 65 1825 (1973)
  25. Naumov A V, Vainer Yu G Phys. Usp. 52 298 (2009); Naumov A V, Vainer Yu G Usp. Fiz. Nauk 179 322 (2009)
  26. Eremchev I Yu et al Phys. Usp. 65 617 (2022); Eremchev I Yu et al Usp. Fiz. Nauk 192 663 (2022)
  27. Novotny L, Hecht B Principles Of Nano-Optics (Cambridge: Cambridge Univ. Press, 2012)
  28. Chen D, Dovichi N J Anal. Chem. 68 690 (1996)
  29. Matthews J C Fundamentals Of Receptor, Enzyme, And Transport Kinetics (Boca Raton, FL: CRC Press, 1993)
  30. Karlsson R Anal. Biochem. 221 (1) 142 (1994)
  31. Latour R A J. Biomed. Mater. Res. A 103 949 (2015)
  32. Zijlstra P, Paulo P M R, Orrit M Nature Nanotechnol. 7 379 (2012)
  33. Weiss S Science 283 1676 (1999)
  34. Yang Y et al Chem. Rev. 113 192 (2013)
  35. Sun W et al Chem. Rev. 116 7768 (2016)
  36. Baldo M A, Thompson M E, Forrest S R Nature 403 750 (2000)
  37. Michalet X et al Science 307 538 (2005)
  38. Min Y et al Nanomaterials 4 129 (2014)
  39. Chudakov D M et al Physiol. Rev. 90 1103 (2010)
  40. Demtröder W Laser Spectroscopy 1: Basic Principles 5th ed. (Berlin: Springer, 2014)
  41. Wang J-H et al Laser Photon. Rev. 16 2100622 (2022)
  42. Doronin I V et al Nanoscale 16 14899 (2024)
  43. Gritchenko A S et al Nanoscale 14 9910 (2022)
  44. Lebedev D V et al Adv. Opt. Mater. 12 2400581 (2024)
  45. Beliaev L Yu, Takayama O, Melentiev P N, Lavrinenko A V Opto-Electron. Adv. 4 210031 (2021)
  46. Hirschfeld T Appl. Opt. 15 2965 (1976)
  47. Widengren J, Rigler R Bioimaging 4 (3) 149 (1996)
  48. Munkhbat B et al Sci. Adv. 4 eaas9552 (2018)
  49. Doronin I V et al Nano Lett. 22 105 (2022)
  50. Balykin V I, Melentiev P N Phys. Usp. 61 133 (2018); Balykin V I, Melentiev P N Usp. Fiz. Nauk 188 143 (2018)
  51. Maier S A Plasmonics: Fundamentals And Applications (New York: Springer, 2007)
  52. Melentiev P N, Balykin V I Phys. Usp. 62 267 (2019); Melentiev P N, Balykin V I Usp. Fiz. Nauk 189 282 (2019)
  53. Klimov V Nanoplasmonics (New York: Jenny Stanford Publ., 2014)
  54. Levene M J et al Science 299 682 (2003)
  55. Bethe H A Phys. Rev. 66 163 (1944)
  56. Crouch G M, Han D, Bohn P W J. Phys. D 51 193001 (2018)
  57. Rigneault H et al Phys. Rev. Lett. 95 117401 (2005)
  58. Entzeroth M, Flotow H, Condron P Curr. Protocols Pharmacol. 44 9.4 (2009)
  59. Miyake T et al Anal. Chem. 80 6018 (2008)
  60. Chen J et al Proc. Natl. Acad. Sci. USA 111 664 (2013)
  61. Baek S et al Anal. Chem. 94 3970 (2022)
  62. Punj D et al WIREs Nanomed. Nanobiotechnol. 6 268 (2014)
  63. Jackson J D Classical Electrodynamics 3rd ed. (New York: Wiley, 1999)
  64. Eid J et al Science 323 133 (2009)
  65. Zhong C F et al "Substrates and optical systems and methods of use thereof" CA2737505C (2009); Zhong C F et al https://patents.google.com/patent/CA2737505C/
  66. Kogelnik H IEEE Trans. Microwave Theory Tech. 23 (1) 2 (1975); Translated into Russian, Kogelnik H Usp. Fiz. Nauk 121 695 (1977)
  67. Pengfei Y et al Opt. Precision Eng. 30 (1) 62 (2022)
  68. Katrukha I A Biochemistry Moscow 78 1447 (2013)
  69. Hamm C W et al Eur. Heart J. 32 2999 (2011)
  70. Shah A S V et al Lancet 386 2481 (2015)
  71. Babuin L, Jaffe A S CMAJ 173 1191 (2005)
  72. Melentiev P N et al ACS Sens. 5 3576 (2020)
  73. Bhat T, Cao A, Yin J Viruses 14 383 (2022)
  74. Kudryavtsev D S et al Nanoscale 16 12424 (2024)
  75. Wölfel R et al Nature 581 465 (2020)
  76. Wang W et al JAMA 323 1843 (2020)
  77. Tsetlin V I Trends Pharmacol. Sci. 36 109 (2015)
  78. Shendure J et al Nature 550 345 (2017)
  79. Shendure J, Ji H Nat. Biotechnol. 26 1135 (2008)
  80. Frankish A et al Nucl. Acids Res. 47 D766 (2019)
  81. Djordjevic S P et al Nat. Rev. Genet. 25 142 (2024)
  82. Thomas T, Gilbert J, Meyer F Microbial Inform. Exp. 2 3 (2012)
  83. Rubio L, Galipienso L, Ferriol I Front. Plant Sci. 11 1092 (2020)
  84. Korlach J et al Proc. Natl. Acad. Sci. USA 105 1176 (2008)
  85. "25 million ZMW SMRT Cell." PacBio, https://www.pacb.com/revio/
  86. Dias R, Torkamani A Genome Med. 11 70 (2019)
  87. Novakovsky G et al Nat. Rev. Genet. 24 125 (2023)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions