Issues

 / 

2023

 / 

March

  

Reviews of topical problems


Nonlocal (fractional-differential) model of cosmic ray transport in the interstellar medium

  a,   b, §  c
a Ul'yanovsk State University, ul. L. Tolstogo 42, Ulyanovsk, 432700, Russian Federation
b Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
c Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation

Mathematical modeling of the propagation of charged particles in the interstellar medium is a key aspect of the physics of cosmic rays. Improvements in measuring systems and enhancement of statistics via the results of extraterrestrial astronomy stimulate regular revisions of the computational models. Most of the currently used approaches are based on the local model of normal diffusion, which is attracting growing criticism. Reservations about this model arise because, first, it is in conflict with the relativistic principle of maximum speed and, second, it ignores specific spatial correlations in the properties of the turbulent interstellar medium. In this regard, in a previous review article by the first author (Physics-Uspekhi 56 1074 (2013)), some arguments were adduced in favor of a nonlocal model of cosmic ray transport based on fractional differential operators. In this review, we continue expounding on the physical and mathematical properties of the fractional differential theory, with more attention focused on the procedure for incorporating the features of the interstellar medium into nonlocal operators. New results obtained in the framework of this approach are presented, compared, and discussed.

Fulltext pdf (3.6 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.12.039118
Keywords: cosmic rays, nonlocal model, fractional differential operator, turbulence, fractal medium, energy spectrum, anisotropy
PACS: 02.50.−r, 05.40.Fb, 98.70.Sa (all)
DOI: 10.3367/UFNe.2021.12.039118
URL: https://ufn.ru/en/articles/2023/3/a/
001096987300001
2-s2.0-85182874677
2023PhyU...66..221U
Citation: Uchaikin V V, Erlykin A D, Sibatov R T "Nonlocal (fractional-differential) model of cosmic ray transport in the interstellar medium" Phys. Usp. 66 221–262 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 16th, July 2021, revised: 6th, October 2021, 3rd, December 2021

Оригинал: Учайкин В В, Ерлыкин А Д, Сибатов Р Т «Нелокальная (дробно-дифференциальная) модель переноса космических лучей в межзвёздной среде» УФН 193 233–278 (2023); DOI: 10.3367/UFNr.2021.12.039118

References (183) Cited by (2) Similar articles (20) ↓

  1. V.V. Uchaikin “Fractional phenomenology of cosmic ray anomalous diffusionPhys. Usp. 56 1074–1119 (2013)
  2. R.T. Sibatov, V.V. Uchaikin “Fractional differential approach to dispersive transport in semiconductorsPhys. Usp. 52 1019–1043 (2009)
  3. E.G. Berezhko, G.F. Krymskii “Acceleration of cosmic rays by shock wavesSov. Phys. Usp. 31 27–51 (1988)
  4. E.G. Berezhko, G.F. Krymskii “Acceleration of cosmic rays by shock wavesSov. Phys. Usp. 31 27–51 (1988)
  5. V.V. Uchaikin “Self-similar anomalous diffusion and Levy-stable lawsPhys. Usp. 46 821–849 (2003)
  6. V.L. Ginzburg “Astrophysical aspects of cosmic-ray research (first 75 years and outlook for the future)Sov. Phys. Usp. 31 491–510 (1988)
  7. M.I. Panasyuk, L.I. Miroshnichenko “Particle acceleration in space: a universal mechanism?Phys. Usp. 65 379–405 (2022)
  8. V.P. Budaev, S.P. Savin, L.M. Zelenyi “Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: towards a quantitative definition of plasma transport featuresPhys. Usp. 54 875–918 (2011)
  9. A. Loskutov “Fascination of chaosPhys. Usp. 53 1257–1280 (2010)
  10. K.P. Zybin, V.A. Sirota “Stretching vortex filaments model and the grounds of statistical theory of turbulencePhys. Usp. 58 556–573 (2015)
  11. I.V. Galaktionov “Search for antimatter and dark matter, precision studies of the cosmic rays fluxes on the international space station. AMS experiment. Results of four year exposurePhys. Usp. 60 40–57 (2017)
  12. O.G. Bakunin “Reconstruction of streamline topology, and percolation models of turbulent transportPhys. Usp. 56 243–260 (2013)
  13. L.I. Dorman, I.Ya. Libin “Short-period variations in cosmic-ray intensitySov. Phys. Usp. 28 233–256 (1985)
  14. O.G. Bakunin “Stochastic instability and turbulent transport. Characteristic scales, increments, diffusion coefficientsPhys. Usp. 58 252–285 (2015)
  15. V.L. Ginzburg, V.A. Dogel’ “Some aspects of gamma-ray astronomySov. Phys. Usp. 32 385–415 (1989)
  16. A.M. Gal’per, V.G. Kirillov-Ugryumov, B.I. Luchkov “Observational gamma astronomySov. Phys. Usp. 17 186–198 (1974)
  17. V.L. Ginzburg, S.I. Syrovatskii “Some problems of gamma and X-ray astronomySov. Phys. Usp. 7 696–720 (1965)
  18. V.L. Ginzburg, L.V. Kurnosova et alSoviet satellite and rocket investigations of the nuclear component of cosmic raysSov. Phys. Usp. 7 230–269 (1964)
  19. V.L. Ginzburg, S.I. Syrovatskii “Present status of the question of the origin of cosmic raysSov. Phys. Usp. 3 504–541 (1961)
  20. A.D. Panov, D.M. Podorozhnyi, A.N. Turundaevskii “Direct observations of cosmic rays: state of the artPhys. Usp. 67 639–667 (2024)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions