Reviews of topical problems

Fractional differential approach to dispersive transport in semiconductors

Ul'yanovsk State University, ul. L. Tolstogo 42, Ulyanovsk, 432700, Russian Federation

A novel approach using equations with fractional order derivatives to describe dispersive transport in disordered semiconductors is described. A relationship between the self-similarity of dispersive transport, stable limiting distributions, and kinetic equations with fractional derivatives is established. It is shown that unlike the well-known Scher — Montroll and Arkhipov — Rudenko models, which are in a sense alternatives to the normal transport model, fractional differential equations provide a unified mathematical framework for describing normal and dispersive transport. The fractional differential formalism allows the equations of ambipolar dispersive transport to be written down and transport in systems with a distributed dispersion parameter to be described. The relationship between fractional differential equations and the generalized limiting theorem reveals the probabilistic aspects of the phenomenon in which a dispersive-to-Gaussian transport transition occurs in a time-of-flight experiment as the applied voltage is decreased and/or the sample thickness increased.

Fulltext pdf (413 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0179.200910c.1079
PACS: 05.40.Fb, 72.20.−i, 73.40.−c (all)
DOI: 10.3367/UFNe.0179.200910c.1079
Citation: Sibatov R T, Uchaikin V V "Fractional differential approach to dispersive transport in semiconductors" Phys. Usp. 52 1019–1043 (2009)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Сибатов Р Т, Учайкин В В «Дробно-дифференциальный подход к описанию дисперсионного переноса в полупроводниках» УФН 179 1079–1104 (2009); DOI: 10.3367/UFNr.0179.200910c.1079

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions