Issues

 / 

2023

 / 

December

  

Methodological notes


Magnetorotational instability in Keplerian disks: a nonlocal approach

  a, b,   a, b, §  a, c, *  a, d
a Lomonosov Moscow State University, Shternberg State Astronomical Institute, Universitetskii prosp. 13, Moscow, 119889, Russian Federation
b Kazan Federal University, ul. Kremlyovskaya 18, Kazan, 420008, Russian Federation
c Tel-Aviv University, Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv, Israel
d Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, Bonn, 53121, Germany

We revisit the modal analysis of small perturbations in Keplerian ideal gas flows with a constant vertical magnetic field leading to magnetorotational instability (MRI) using the nonlocal approach. In the general case, MRI modes are described by a Schrödinger-like differential equation with some effective potential, including 'repulsive' (1/r2) and 'attractive' (−1/rr3) terms, and are quantized. In shallow potentials, there are no stationary 'energy levels.' In thin Keplerian accretion discs, the perturbation wavelengths λ =2π /kz are smaller than the disc semi-thickness h only in 'deep' potential wells. We find that there is a critical magnetic field for the MRI to develop. The instability arises for magnetic fields below this critical value. In thin accretion discs, at low background Alfvén velocity cA≪ (cA)cr, the MRI instability increment ω is suppressed compared to the value obtained in the local perturbation analysis, ω ≈ −√3icAkz. We also investigate for the first time the case of a radially variable background magnetic field.

Fulltext pdf (758 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2023.09.039554
Keywords: magnetorotational instability, accretion discs
PACS: 95.30.Qd, 97.10.Gz (all)
DOI: 10.3367/UFNe.2023.09.039554
URL: https://ufn.ru/en/articles/2023/12/f/
001172931200005
2-s2.0-85183001473
2023PhyU...66.1262S
Citation: Shakura N I, Postnov K A, Kolesnikov D A, Lipunova G V "Magnetorotational instability in Keplerian disks: a nonlocal approach" Phys. Usp. 66 1262–1276 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 16th, December 2022, revised: 21st, September 2023, 22nd, September 2023

Оригинал: Шакура Н И, Постнов К А, Колесников Д А, Липунова Г В «Магниторотационная неустойчивость в кеплеровских дисках: нелокальный подход» УФН 193 1340–1355 (2023); DOI: 10.3367/UFNr.2023.09.039554

References (35) Cited by (5) Similar articles (18) ↓

  1. D.A. Shalybkov “Hydrodynamic and hydromagnetic stability of the Couette flowPhys. Usp. 52 915–935 (2009)
  2. V.S. Beskin, V.I. Par’ev “Axially symmetric steady-state flows in the vicinity of a Kerr black hole and the nature of the activity of galactic nucleiPhys. Usp. 36 (6) 529–539 (1993)
  3. V.S. Beskin, T.I. Khalilov “On the problem of boundary conditions for mixed type equations arising in the description of astrophysical transonic flowsPhys. Usp. 66 741–746 (2023)
  4. A.G. Shalashov, E.D. Gospodchikov “'Anomalous' dissipation of a paraxial wave beam propagating along an absorbing planePhys. Usp. 65 1303–1312 (2022)
  5. A.G. Zagorodnii, A.V. Kirichok, V.M. Kuklin “One-dimensional modulational instability models of intense Langmuir plasma oscillations using the Silin—Zakharov equationsPhys. Usp. 59 669–688 (2016)
  6. M.Ya. Agre “Multipole expansions in magnetostaticsPhys. Usp. 54 167–180 (2011)
  7. B.N. Shvilkin “The role of nonquasineutrality in instable plasma oscillationsPhys. Usp. 37 607–608 (1994)
  8. N.V. Selina “Light diffraction in a plane-parallel layered structure with the parameters of a Pendry lensPhys. Usp. 65 406–414 (2022)
  9. A.S. Dzarakhokhova, N.P. Zaretskii et alIdentity of the mechanisms of Weibel and Alfvén-cyclotron plasma instabilitiesPhys. Usp. 63 611–616 (2020)
  10. Yu.N. Barabanenkov, S.A. Nikitov, M.Yu. Barabanenkov “Quantum fluctuations in magnetic nanostructuresPhys. Usp. 62 82–91 (2019)
  11. M.V. Kuzelev, A.A. Rukhadze “Waves in inhomogeneous plasmas and liquid and gas flows. Analogies between electro- and gas-dynamic phenomenaPhys. Usp. 61 748–764 (2018)
  12. A.I. Frank “On the properties of the "potential" neutron dispersion law in a refractive mediumPhys. Usp. 61 900–901 (2018)
  13. V.I. Alshits, E.V. Darinskaya et alDislocation kinetics in nonmagnetic crystals: a look through a magnetic windowPhys. Usp. 60 305–318 (2017)
  14. A.L. Buchachenko “Magnetoplasticity and the physics of earthquakes. Can a catastrophe be prevented?Phys. Usp. 57 92–98 (2014)
  15. R.Z. Muratov “Some useful correspondences in classical magnetostatics, and the multipole representations of the magnetic potential of an ellipsoidPhys. Usp. 55 919–928 (2012)
  16. M.V. Davidovich “On energy and momentum conservation laws for an electromagnetic field in a medium or at diffraction on a conducting platePhys. Usp. 53 595–609 (2010)
  17. L.Kh. Ingel’ “’Anticonvection’Phys. Usp. 40 741–745 (1997)
  18. A.M. Fridman “Modified criterion for the Landau stabilization of the instability of a tangential velocity discontinuity in a compressible mediumSov. Phys. Usp. 33 (10) 865–867 (1990)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions