Issues

 / 

2023

 / 

November

  

Physics of our days


Quantum entanglement, teleportation, and randomness: Nobel Prize in Physics 2022

  a, b, c,   b, c, §  a, c, *  a, c
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b National University of Science and Technology "MISIS", Leninskii prosp. 4, Moscow, 119049, Russian Federation
c International Center for Quantum Optics and Quantum Technologies (the Russian Quantum Center), Skolkovo Innovation Center, Bolshoi Boulevard, Building 30, Block 1, 3rd floor, sectors G3, G7, Moscow, Moscow Region, 121205, Russian Federation

Precise control for individual quantum systems, such as individual photons, atoms, or ions, opens the door to a range of quantum technologies. The goal of this concept is to create devices that, due to quantum effects, will be able to solve prob„lems of data processing and secure information transfer and high-precision measurements of parameters of the surrounding world more effectively than existing approaches do. The key step in the advent of quantum technologies was the pioneering work of the second half of the twentieth century, which, first, showed the paradoxical nature and correctness of the quantum mechanical description of nature and, second, laid down and introduced the basic experimental approaches that became the basis of modern quantum technologies. The Nobel Prize in Physics 2022 was awarded to Alain Aspect, John Clauser, and Anton Zeilinger for their experiments with entangled photons, establishing the violation of Bell inequalities, and pioneering quantum information science.

Fulltext pdf (525 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2023.06.039412
Keywords: EPR paradox, quantum correlations, entanglement, teleportation, quantum communications, quantum computing, quantum sensors, quantum metrology
PACS: 03.65.Ud, 03.67.−a, 42.50.Dv (all)
DOI: 10.3367/UFNe.2023.06.039412
URL: https://ufn.ru/en/articles/2023/11/b/
001131650500005
2-s2.0-85182895220
2023PhyU...66.1095F
Citation: Fedorov A K, Kiktenko E O, Khabarova K Yu, Kolachevsky N N "Quantum entanglement, teleportation, and randomness: Nobel Prize in Physics 2022" Phys. Usp. 66 1095–1104 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 27th, March 2023, revised: 5th, June 2023, 16th, June 2023

Оригинал: Федоров А К, Киктенко Е О, Хабарова К Ю, Колачевский Н Н «Квантовая запутанность, телепортация и случайность: Нобелевская премия по физике 2022 года» УФН 193 1162–1172 (2023); DOI: 10.3367/UFNr.2023.06.039412

References (120) ↓ Cited by (7) Similar articles (10)

  1. Planck M Ann. Physik 309 553 (1901)
  2. Bohr N Philos. Mag. 6 26 1 (1913)
  3. Bohr N Philos. Mag. 6 26 476 (1913)
  4. Bohr Niels Philos. Mag. 6 26 857 (1913)
  5. Heisenberg W Z. Phys. 33 879 (1925)
  6. Schrödinger E Phys. Rev. 28 1049 (1926)
  7. Schrödinger E Naturwissenschaften 23 807 (1935)
  8. Einstein A, Podolsky B, Rosen N Phys. Rev. 47 777 (1935)
  9. Fock V A et al Usp. Fiz. Nauk 16 436 (1936)
  10. Bohm D Quantum Theory (New York: Prentice-Hall, 1951)
  11. von Neumann J Mathematische Grundlagen Der Quantenmechanik (Berlin: J. Springer, 1932); Translated into English, von Neumann J Mathematical Foundations Of Quantum Mechanics (Princeton, NJ: Princeton Univ. Press, 2018)
  12. Bohm D Phys. Rev. 85 166 (1952)
  13. Bell J S Physics Physique Fizika 1 195 (1964)
  14. Kilin S Ya Phys. Usp. 42 435 (1999); Kilin S Ya Usp. Fiz. Nauk 169 507 (1999)
  15. Valiev K A Phys. Usp. 48 1 (2005); Valiev K A Usp. Fiz. Nauk 175 3 (2005)
  16. Khabarova K Yu, Zalivako I V, Kolachevsky N N Phys. Usp. 65 1217 (2022); Khabarova K Yu, Zalivako I V, Kolachevsky N N Usp. Fiz. Nauk 192 1305 (2022)
  17. Vishnyakova G A et al Phys. Usp. 59 168 (2016); Vishnyakova G A et al Usp. Fiz. Nauk 186 176 (2016)
  18. Sukachev D D Phys. Usp. 64 1021 (2021); Sukachev D D Usp. Fiz. Nauk 191 1077 (2021)
  19. Trushechkin A S et al Phys. Usp. 64 88 (2021); Trushechkin A S et al Usp. Fiz. Nauk 191 93 (2021)
  20. Klyshko D N Sov. Phys. Usp. 31 74 (1988); Klyshko D N Usp. Fiz. Nauk 154 133 (1988)
  21. Klyshko D N Sov. Phys. Usp. 32 555 (1989); Klyshko D N Usp. Fiz. Nauk 158 327 (1989)
  22. Belinskii A V, Klyshko D N Phys. Usp. 36 653 (1993); Belinskii A V, Klyshko D N Usp. Fiz. Nauk 163 (8) 1 (1993)
  23. Sokolov Yu L Phys. Usp. 42 481 (1999); Sokolov Yu L Usp. Fiz. Nauk 169 559 (1999)
  24. Zheltikov A M, Scully M O Phys. Usp. 63 698 (2020); Zheltikov A M, Scully M O Usp. Fiz. Nauk 190 749 (2020)
  25. Kholevo A S Quantum Systems, Channels, Information: A Mathematical Introduction (Berlin: De Gruyter, 2019); Translated from Russian, Kholevo A S Kvantovye Sistemy, Kanaly, Informatsiya (Moscow: MTsNMO, 2014)
  26. Freedman S J, Clauser J F Phys. Rev. Lett. 28 938 (1972)
  27. Aspect A, Grangier Ph, Roger G Phys. Rev. Lett. 49 91 (1982)
  28. Aspect A, Dalibard J, Roger G Phys. Rev. Lett. 49 1804 (1982)
  29. Aspect A Nature 446 866 (2007)
  30. Weihs G et al Phys. Rev. Lett. 81 5039 (1998)
  31. Scheidl T et al Proc. Natl. Acad. Sci. USA 107 19708 (2010)
  32. Giustina M et al Nature 497 227 (2013)
  33. Gröblacher S et al Nature 446 871 (2007)
  34. Handsteiner J et al Phys. Rev. Lett. 118 060401 (2017)
  35. Hensen B et al Nature 526 682 (2015)
  36. Pan J-W et al Nature 403 515 (2000)
  37. Bennett Ch H et al Phys. Rev. Lett. 70 1895 (1993)
  38. Wootters W K, Zurek W H Nature 299 802 (1982)
  39. Dieks D Phys. Lett. A 92 271 (1982)
  40. Bouwmeester D et al Nature 390 575 (1997)
  41. Boschi D et al Phys. Rev. Lett. 80 1121 (1998)
  42. Preskill J Lecture Notes For Physics 229: Quantum Information And Computation (Pasadena, CA: California Institution of Technology, 1998); Translated into Russian, Preskill J Kvantovaya Informatsiya I Kvantovye Vychisleniya Vol. 1 (Moscow-Izhevsk: Inst. Komp. Issled., RKhD, 2008)
  43. Coecke B Contemp. Phys. 51 59 (2010)
  44. Laforest M, Baugh J, Laflamme R Phys. Rev. A 73 032323 (2006)
  45. Jennewein T et al Phys. Rev. Lett. 88 017903 (2001)
  46. Megidish E et al Phys. Rev. Lett. 110 210403 (2013)
  47. Lloyd S et al Phys. Rev. D 84 025007 (2011)
  48. Lloyd S et al Phys. Rev. Lett. 106 040403 (2011)
  49. Korotaev S M, Kiktenko E O Phys. Scr. 90 085101 (2015)
  50. Kiktenko E O Phys. Rev. A 107 032419 (2023)
  51. Hoke J C et al (Google Quantum AI and Collab.) Nature 622 481 (2023); Hoke J C et al (Google Quantum AI and Collab.) arXiv:2303.04792
  52. Kiktenko E O, Popov A A, Fedorov A K Phys. Rev. A 93 062305 (2016)
  53. Julsgaard B, Kozhekin A, Polzik E S Nature 413 400 (2001)
  54. Sherson J et al Physica B 41 223001 (2008)
  55. Brassard G et al Proc. Natl. Acad. Sci. USA 95 11032 (1998)
  56. Arute F et al Nature 574 505 (2019)
  57. Wu Y et al Phys. Rev. Lett. 127 180501 (2021)
  58. Xue X et al Nature 601 343 (2022)
  59. Madzik M T et al Nature 601 348 (2022)
  60. Noiri A et al Nature 601 338 (2022)
  61. Zhong H-S et al Science 370 1460 (2020)
  62. Madsen L S et al Nature 606 75 (2022)
  63. Ebadi S et al Nature 595 227 (2021)
  64. Scholl P et al Nature 595 233 (2021)
  65. Henriet L et al Quantum 4 327 (2020)
  66. Graham T M et al Nature 604 457 (2022)
  67. Zhang J et al Nature 551 601 (2017)
  68. Blatt R, Roos C F Nat. Phys. 8 277 (2012)
  69. Hempel C et al Phys. Rev. X 8 031022 (2018)
  70. Pino J M et al Nature 592 209 (2021)
  71. Zalivako I V JETP Lett. 114 59 (2021); Zalivako I V Pis’ma Zh. Eksp. Teor. Fiz. 114 53 (2021)
  72. Semenin N V et al JETP Lett. 114 486 (2021); Semenin N V et al Pis’ma Zh. Eksp. Teor. Fiz. 114 553 (2021)
  73. Aksenov M A et al Phys. Rev. A 107 052612 (2023)
  74. Besedin I S et al Quantum Electron. 48 880 (2018); Besedin I S et al Kvantovaya Elektron. 48 10880 (2018)
  75. Moskalenko I N et al Npj Quantum Inf. 8 130 (2022)
  76. Gerasimov L V et al "Coupled dynamics of spin qubits in optical dipole microtraps" arXiv:2205.03383
  77. Samoylenko S R et al Laser Phys. Lett. 17 025203 (2020)
  78. Borzenkova O V et al Appl. Phys. Lett. 118 144002 (2021)
  79. Skryabin N N et al Appl. Phys. Lett. 122 121102 (2023)
  80. Wang V et al Front. Phys. 8 479 (2020)
  81. Kiktenko E O et al Phys. Rev. A 91 042312 (2015)
  82. Kiktenko E O et al Phys. Rev. A 101 022304 (2020)
  83. Nikolaeva A S, Kiktenko E O, Fedorov A K "Efficient realization of quantum algorithms with qudits" arXiv:2111.04384
  84. Bennett C H, Brassard G Proc. of IEEE Intern. Conf. on Computers, Systems, and Signal Processing, Bangalore, India, 10-12 December 1984 (2014) p. 175; Bennett C H, Brassard G Theor. Comput. Sci. 560 7 (2014); Bennett C H, Brassard G arXiv:2003.06557
  85. Ekert A K Phys. Rev. Lett. 67 661 (1991)
  86. Diamanti E et al Npj Quantum Inf. 2 16025 (2016)
  87. Wang S et al Nat. Photon. 16 154 (2022)
  88. Gol’tsman G N et al Appl. Phys. Lett. 79 705 (2001)
  89. Liao Sh-K et al Phys. Rev. Lett. 120 030501 (2018)
  90. Liao Sh-K et al Nature 549 43 (2017)
  91. Ren J-G et al Nature 549 70 (2017)
  92. Lu Ch-Y et al Rev. Mod. Phys. 94 035001 (2022)
  93. Sangouard N et al Rev. Mod. Phys. 83 33 (2011)
  94. Bhaskar M K et al Nature 580 60 (2020)
  95. Brennen G, Giacobino E, Simon C New J. Phys. 17 050201 (2015)
  96. Lvovsky A I, Sanders B C, Tittel W Nat. Photon. 3 706 (2009)
  97. Rosenfeld W J et al Phys. Rev. Lett. 98 050504 (2007)
  98. Vittorini G Phys. Rev. A 90 040302 (2014)
  99. Wang P et al Nat. Commun. 12 233 (2021)
  100. Hausmann B J M et al Science 354 847 (2016)
  101. Neeley M et al Nat. Phys. 4 523 (2008)
  102. Matanin A R et al Phys. Rev. Appl. 19 034011 (2023)
  103. Kalachev A Phys. Rev. A 78 043812 (2008)
  104. Pironio S et al Nature 464 1021 (2010)
  105. Acín A, Masanes L Nature 540 213 (2016)
  106. Bierhorst P et al Nature 556 223 (2018)
  107. Drahi D et al Phys. Rev. X 10 041048 (2020)
  108. Ma X et al Npj Quantum Inf. 2 16021 (2016)
  109. Leibfried D et al Science 304 1476 (2004)
  110. Kessler E M et al Phys. Rev. Lett. 112 190403 (2014)
  111. Kómár P et al Nat. Phys. 10 582 (2014)
  112. Kimble H J Nature 453 1023 (2008)
  113. Monroe C R, Schoelkopf R J, Lukin M D Sci. Am. 314 (5) 50 (2016)
  114. Moehring D L et al Nature 449 68 (2007)
  115. Stephenson L J et al Phys. Rev. Lett. 124 110501 (2020)
  116. Krutyanskiy V et al Phys. Rev. Lett. 130 050803 (2023)
  117. Hofmann J et al Science 337 72 (2012)
  118. Rosenfeld W et al Phys. Rev. Lett. 119 010402 (2017)
  119. van Leent T et al Nature 607 69 (2022)
  120. Zurel M, Okay C, Raussendorf R Phys. Rev. Lett. 125 260404 (2020)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions