Issues

 / 

2023

 / 

October

  

Methodological notes


Unipolar pulse of an electromagnetic field with uniform motion of a charge in a vacuum

 
Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation

Progress in the generation of extremely short pulses of electromagnetic radiation makes the question of the properties of the limiting form of their shortening — unipolar pulses with a significant zero-frequency component of the spectrum, that is, the electric area of the pulse — relevant. Recently, it has been established that it is the electric area that determines the effectiveness of the impact of extremely short pulses on micro-objects. At the same time, unipolar pulses have a number of unusual properties, which makes some researchers doubt the possibility of their existence and propagation. Here, we show that a uniformly moving relativistic electric charge creates a short unipolar pulse of the electromagnetic field. Unipolarity is realized as well for transition radiation. We also present the unipolarity condition for a pair of charges — a dipole — and for a more general system of moving charges. This confirms the reality of unipolar electromagnetic pulses, which are promising for applications of extremely short pulses.

Fulltext pdf (184 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2022.12.039297
Keywords: unipolar electromagnetic pulses, pulse electric area, field of moving electric charges
PACS: 41.20.Jb, 41.75.Ht, 42.65.Re (all)
DOI: 10.3367/UFNe.2022.12.039297
URL: https://ufn.ru/en/articles/2023/10/g/
001112744100007
2-s2.0-85182898670
2023PhyU...66.1059R
Citation: Rosanov N N "Unipolar pulse of an electromagnetic field with uniform motion of a charge in a vacuum" Phys. Usp. 66 1059–1064 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 16th, June 2022, revised: 1st, September 2022, 13th, December 2022

Оригинал: Розанов Н Н «Униполярный импульс электромагнитного поля при равномерном движении заряда в вакууме» УФН 193 1127–1133 (2023); DOI: 10.3367/UFNr.2022.12.039297

References (75) ↓ Cited by (21) Similar articles (20)

  1. Krausz F, Ivanov M Rev. Mod. Phys. 81 163 (2009)
  2. Midorikawa K Nat. Photon. 16 267 (2022)
  3. Xue B et al Optica 9 360 (2022)
  4. Ryabikin M Yu, Emelin M Yu, Strelkov V V Phys. Usp. 66 360 (2023); Ryabikin M Yu, EmelM Yu, Strelkov V V Usp. Fiz. Nauk 193 382 (2023); Strelkov V V et al Phys. Usp. 59 425 (2016); Strelkov V V et al Usp. Fiz. Nauk 186 449 (2016)
  5. Bucksbaum P H AIP Conf. Proc. 323 416 (1994)
  6. Dimitrovski D, Solov’ev E A, Briggs J S Phys. Rev. Lett. 93 083003 (2004)
  7. Dimitrovski D, Solov’ev E A, Briggs J S Phys. Rev. A 72 043411 (2005)
  8. Lugovskoy A, Bray I Eur. Phys. J. D 69 271 (2015)
  9. Rosanov N N Opt. Spectrosc. 124 72 (2018); Rosanov N N Opt. Spektrosk. 124 75 (2018)
  10. Arkhipov R M et al Opt. Lett. 44 1202 (2019)
  11. Arkhipov R M et al Sci. Rep. 11 1961 (2021)
  12. Arkhipov R M et al JETP Lett. 114 129 (2021); Arkhipov R M et al Pis’ma Zh. Eksp. Teor. Fiz. 114 156 (2021)
  13. Rosanov N et al Phys. Rev. A 104 063101 (2021)
  14. Rosanov N N, Vysotina N V J. Exp. Theor. Phys. 130 52 (2020); Rosanov N N, Vysotina N V Zh. Eksp. Teor. Fiz. 157 63 (2020)
  15. Aleksandrov I A et al Phys. Rev. A 102 023102 (2020)
  16. Rosanov N N JETP Lett. 113 145 (2021); Rosanov N N Pis’ma Zh. Eksp. Teor. Fiz. 113 157 (2021)
  17. Rosanov N N, Arkhipov R M, Arkhipov M V Phys. Usp. 61 1227 (2018); Rosanov N N, Arkhipov R M, Arkhipov M V Usp. Fiz. Nauk 188 1347 (2018)
  18. Arkhipov R M, Arkhipov M V, Rosanov N N Quantum Electron. 50 801 (2020); Arkhipov R M, Arkhipov M V, Rosanov N N Kvantovaya Elektron. 50 801 (2020)
  19. Translated into Russian, Pauli W Handbuch Der Physik Vol. 24, Pt. 1 (Eds H Geiger, K Seheel) (Berlin: J. Springer, 1933) p. 164
  20. Migdal A B Zh. Eksp. Teor. Fiz. 9 1163 (1939)
  21. Magnus W Commun. Pure Appl. Math. 7 649 (1954)
  22. Schiff L I Quantum Mechanics (New York: McGraw-Hill, 1968); Translated into Russian, Schiff L I Kvantovaya Mekhanika (Moscow: IL, 1959)
  23. Landau L D, Lifshitz E M Quantum Mechanics: Non-Relativistics Theory (Oxford: Pergamon Press, 1977); Translated from Russian, Landau L D, Lifshitz E M Kvantovaya Mekhanika. Nerelyativistskaya Teoriya (Moscow: Nauka, 1974)
  24. Jackson J D Classical Electrodynamics (New York: J. Wiley, 1962); Translated into Russian, Jackson J D Klassicheskaya Elektrodinamika (Moscow: Mir, 1965)
  25. Bessonov E G Sov. Phys. JETP 53 433 (1981); Bessonov E G Zh. Eksp. Teor. Fiz. 80 852 (1981)
  26. Rosanov N N Opt. Spectrosc. 107 721 (2009); Rosanov N N Opt. Spektrosk. 107 761 (2009)
  27. Rosanov N N Dissipativnye Opticheskie Solitony. Ot Mikro- K Nano- I Atto (Dissipative Optical Solitons. From Micro- To Nano- And Atto-) (Moscow: Fizmatlit, 2011)
  28. Sugny D et al Phys. Rev. A 90 053404 (2014)
  29. Naumenko G, Shevelev M J. Instrument. 13 C05001 (2018)
  30. Naumenko G, Shevelev M, Popov K E Phys. Part. Nucl. Lett. 17 834 (2020); Naumenko G, Shevelev M, Popov K E Pis’ma Fiz. Elem. Chast. At. Yad. 17 781 (2020)
  31. Herzer S et al New J. Phys. 20 063019 (2018)
  32. Arkhipov M V et al JETP Lett. 115 1 (2022); Arkhipov M V et al Pis’ma Zh. Eksp. Teor. Fiz. 115 3 (2022)
  33. Plachenov A, Dyakova G J. Phys. Conf. Ser. 2373 062001 (2022)
  34. Plachenov A B, Rosanov N N Radiophys. Quantum Electron. 65 911 (2023); Plachenov A B, Rosanov N N Izv. Vyssh. Uchebn. Zaved. Radiofiz. 65 1003 (2022)
  35. Feshchenko R M J. Exp. Theor. Phys. 136 406 (2023); Feshchenko R M Zh. Eksp. Teor. Fiz. 163 461 (2023)
  36. Rosanov N N Opt. Spectrosc. 127 1050 (2019); Rosanov N N Opt. Spektrosk. 127 960 (2019)
  37. Landau L D, Lifshitz E M Electrodynamics Of Continuous Media (Oxford: Pergamon Press, 1984); Translated from Russian, Landau L D, Lifshitz E M Elektrodinamika Sploshnykh Sred (Moscow: Fizmatlit, 1982)
  38. Landau L D, Lifshitz E M The Classical Theory Of Fields (Oxford: Butterworth-Heinemann, 1975); Translated from Russian, Landau L D, Lifshitz E M Teoriya Polya (Moscow: GIFML, 1960)
  39. Franck J, Hertz G Verhandl. Deutsch. Phys. Gesellschaft 16 457 (1914)
  40. Grigor’ev V I "Izluchenie (Radiation)" Fizicheskii Entsiklopedicheskii Slovar’ (Encyclopedic Handbook Of Physics, Ed.-in-Chief A M Prokhorov) (Moscow: Sov. Entsiklopedia, 1984) p. 206
  41. Rosanov N N Opt. Spectrosc. 128 93 (2020); Rosanov N N Opt. Spektrosk. 128 95 (2020)
  42. Rosanov N N Opt. Spectrosc. 128 490 (2020); Rosanov N N Opt. Spektrosk. 128 502 (2020)
  43. Rosanov N N Tech. Phys. Lett. 46 165 (2020); Rosanov N N Pis’ma Zh. Tekh. Fiz. 46 (4) 15 (2020)
  44. Kinsey N et al Nat. Rev. Mater. 4 742 (2019)
  45. Ginzburg V L, Frank I M J. Phys. USSR 9 353 (1945)
  46. Chen R et al Mater. Today Electron. 3 100025 (2023)
  47. Ginzburg V L, Tsytovich V N Transition Radiation And Transition Scattering (Bristol: A. Hilger, 1990); Translated from Russian, Ginzburg V L, Tsytovich V N Perekhodnoe Izluchenie I Perekhodnoe Rasseyanie (Moscow: Nauka, 1984)
  48. Rosanov N N Laser Phys. Lett. 20 095301 (2023)
  49. Born M, Wolf E Principles Of Optics (Oxford: Pergamon Press, 1985); Translated into Russian, Born M, Wolf E Osnovy Optiki (Moscow: Nauka, 1973)
  50. Zel’dovich Ya B Sov. Phys. JETP 6 1184 (1958); Zel’dovich Ya B Zh. Eksp. Teor. Fiz. 33 1531 (1957)
  51. The Extreme Light Infrastructure, ELI, https://eli-laser.eu/
  52. Khazanov E A Quantum Electron. 52 208 (2022); Khazanov E A Kvantovaya Elektron. 52 208 (2022)
  53. Arkhipov M V, Arkhipov R M, Rosanov N N J. Exp. Theor. Phys. 137 (6) (2023), in press; Arkhipov M V, Arkhipov R M, Rosanov N N Zh. Eksp. Teor. Fiz. 164 (6) (2023), in press
  54. Bogatskaya A V, Popov A M JETP Lett. 118 (4) (2023), in press; Bogatskaya A V, Popov A M Pis’ma Zh. Eksp. Teor. Fiz. 118 291 (2023)
  55. Rosanov N N JETP Lett. 118 (4) (2023), in press; Rosanov N N Pis’ma Zh. Eksp. Teor. Fiz. 118 621 (2023)
  56. Scientific Background to the Nobel Prize in Physics 2023, https://www.nobelprize.org/uploads/2023/10/advanced-physicsprize2023-2.pdf
  57. The 1999 Nobel Prize in Chemistry. Extended version of the Press release 1999, https://www.nobelprize.org/uploads/2018/06/advanced-chemistryprize1999-1.pdf
  58. Corkum P Herald Russ. Acad. Sci. 86 426 (2016); Corkum P Vestn. Ross. Akad. Nauk 86 1073 (2016)
  59. Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Dörner R, Muller H G, Büttiker M, Keller U Science 322 1525 (2008)
  60. Christov I P, Bartels R, Kapteyn H C, Murnane M M Phys. Rev. Lett. 86 5458 (2001)
  61. Keldysh L V Sov. Phys. JETP 20 1307 (1965); Keldysh L V Zh. Eksp. Teor. Fiz. 47 1945 (1964)
  62. Keldysh L V Phys. Usp. 60 1187 (2017); Keldysh L V Usp. Fiz. Nauk 187 1280 (2017)
  63. Keldysh L V Herald Russ. Acad. Sci. 86 413 (2016); Keldysh L V Vest. Ross. Akad. Nauk 86 1059 (2016)
  64. Popov V S Phys. Usp. 47 855 (2004); Popov V S Usp. Fiz. Nauk 174 921 (2004)
  65. Karnakov B M et al Phys. Usp. 58 3 (2015); Karnakov B M et al Usp. Fiz. Nauk 185 3 (2015)
  66. Zheltikov A M Phys. Usp. 60 1087 (2017); Zheltikov A M Usp. Fiz. Nauk 187 1169 (2017)
  67. Zheltikov A M Phys. Usp. 64 370 (2021); Zheltikov A M Usp. Fiz. Nauk 191 386 (2021)
  68. Korzhimanov A V et al Phys. Usp. 54 9 (2011); Korzhimanov A V et al Usp. Fiz. Nauk 181 9 (2011)
  69. Jacquet D, Morjean M Prog. Part. Nucl. Phys. 63 155 (2009)
  70. Ganeev R A Phys. Usp. 52 55 (2009); Ganeev R A Usp. Fiz. Nauk 179 65 (2009)
  71. Ganeev R A Phys. Usp. 56 772 (2013); Ganeev R A Usp. Fiz. Nauk 183 815 (2013)
  72. Bulanov S V et al Phys. Plasmas 20 123114 (2013)
  73. Bulanov S V et al Phys. Usp. 56 429 (2013); Bulanov S V et al Usp. Fiz. Nauk 183 449 (2013)
  74. Andreev A A, Platonov K Yu Opt. Spectrosc. 130 748 (2022); Andreev A A, Platonov K Yu Opt. Spektrosk. 130 943 (2022)
  75. Ragozin E N, Sobel’man I I Phys. Usp. 48 1249 (2005); Ragozin E N, Sobel’man I I Usp. Fiz. Nauk 175 1339 (2005)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions