Issues

 / 

2022

 / 

August

  

Reviews of topical problems


Phase singularities and optical vortices in photonics

 a, b,  c, d,  c, d,  e, f,  a, b,  c, d
a Samara National Research University, Moskovskoe sh. 34, Samara, 443086, Russian Federation
b Image Processing Systems Institute of the RAS — Branch of the FSRC "Crystallography and Photonics" RAS, Molodogvardejskaya st. 151, Samara, 443001, Russian Federation
c Institute of Automation and Control Processes, Far East Division of the Russian Academy of Sciences, Vladivostok, Russian Federation
d Far Eastern Federal University, Sukhanova str. 8, Vladivostok, 690950, Russian Federation
e Swinburne University of Technology, Melbourne, Australia
f Melbourne Centre for Nanofabrication, Australian National Fabrication Facility, Wellington Road, Clayton 151, Melbourne, 3168, Australia

Since the second half of the 20th century, ideas to develop methods for the formation of optical vortices (OVs) or OV beam — regions of circular motion of energy flow in an electromagnetic wave around so-called phase singularity points — have become widespread. Such optical beams are unique because of the special spiral shape of the wave front, endowing them with orbital angular momentum (OAM) that can be transferred to matter and cause rotation of nano- and micro-objects. Presently, OV beams are actively used to solve both applied and fundamental problems in optics and photonics. We systematically discuss the development stages and the main advantages and disadvantages of methods for the formation of OV beams, from the appearance of phase singularities in light scattering in inhomogeneous media to the latest developments in vortex microlasers for controlled generation of light fields with a predefined OAM on nano- and microscales.

Fulltext pdf (1.4 MB)
To the readers pdf (115 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.07.039028
Keywords: singular optics, optical vortices, topological charge, spiral phase plate, spin-orbit interaction, fork-shaped holograms, metasurfaces, integrated optical elements, laser nanofabrication
PACS: 07.60.−j, 42.62.−b, 42.70.−a, 42.79.−e, 42.82.−m, 78.20.Fm (all)
DOI: 10.3367/UFNe.2021.07.039028
URL: https://ufn.ru/en/articles/2022/8/b/
001099034300001
2-s2.0-85182905740
Citation: Porfirev A P, Kuchmizhak A A, Gurbatov S O, Juodkazis S, Khonina S N, Kulchin Yu N "Phase singularities and optical vortices in photonics" Phys. Usp. 65 789–811 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 17th, May 2021, revised: 19th, July 2021, 23rd, July 2021

Оригинал: Порфирьев А П, Кучмижак А А, Гурбатов С О, Йодказис С, Хонина С Н, Кульчин Ю Н «Фазовые сингулярности и оптические вихри в фотонике» УФН 192 841–866 (2022); DOI: 10.3367/UFNr.2021.07.039028

References (508) Cited by (14) Similar articles (20) ↓

  1. M.A. Remnev, V.V. Klimov “Metasurfaces: a new look at Maxwell's equations and new ways to control lightPhys. Usp. 61 157–190 (2018)
  2. B.V. Sokolenko, N.V. Shostka, O.S. Karakchieva “Optical tweezers and manipulators. Modern concepts and future prospectsPhys. Usp. 65 812–833 (2022)
  3. M.V. Rybin, M.F. Limonov “Resonance effects in photonic crystals and metamaterials (100th anniversary of the Ioffe Institute)Phys. Usp. 62 823–838 (2019)
  4. S.I. Lepeshov, A.E. Krasnok et alHybrid nanophotonicsPhys. Usp. 61 1035–1050 (2018)
  5. A.V. Kildishev, V.M. Shalaev “Transformation optics and metamaterialsPhys. Usp. 54 53–63 (2011)
  6. N.A. Veretenov, N.N. Rosanov, S.V. Fedorov “Laser solitons: topological and quantum phenomenaPhys. Usp. 65 131–162 (2022)
  7. K.L. Koshelev, Z.F. Sadrieva et alBound states in the continuum in photonic structuresPhys. Usp. 66 494–517 (2023)
  8. M.I. Tribelsky, A.E. Miroshnichenko “Resonant scattering of electromagnetic waves by small metal particlesPhys. Usp. 65 40–61 (2022)
  9. K.V. Baryshnikova, S.S. Kharintsev et alMetalenses for subwavelength imagingPhys. Usp. 65 355–378 (2022)
  10. V.I. Balykin “Plasmon nanolaser: current state and prospectsPhys. Usp. 61 846–870 (2018)
  11. Yu.V. Vladimirova, V.N. Zadkov “Quantum optics of quantum emitters in the near field of a nanoparticlePhys. Usp. 65 245–269 (2022)
  12. A.E. Grishchenko, A.N. Cherkasov “Orientational order in polymer surface layersPhys. Usp. 40 257–272 (1997)
  13. V.A. Belyakov, V.E. Dmitrienko “The blue phase of liquid crystalsSov. Phys. Usp. 28 535–562 (1985)
  14. G.N. Makarov “Towards molecular laser separation of uranium isotopesPhys. Usp. 65 531–566 (2022)
  15. V.V. Klimov “Optical nanoresonatorsPhys. Usp. 66 263–287 (2023)
  16. G.N. Makarov “New approaches to molecular laser separation of uranium isotopesPhys. Usp. 67 44–54 (2024)
  17. G.N. Makarov “New results for laser isotope separation using low-energy methodsPhys. Usp. 63 245–268 (2020)
  18. G.N. Makarov “Low energy methods of molecular laser isotope separationPhys. Usp. 58 670–700 (2015)
  19. S.V. Chekalin, V.P. Kandidov “From self-focusing light beams to femtosecond laser pulse filamentationPhys. Usp. 56 123–140 (2013)
  20. V.V. Klimov “Control of the emission of elementary quantum systems using metamaterials and nanometaparticlesPhys. Usp. 64 990–1020 (2021)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions