Issues

 / 

2022

 / 

July

  

Conferences and symposia


High-temperature superconductivity in hydrides

  a,  b,  a,   b,  b, §  c,  c, *  d, c, e, #  a, °  b
a Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninskii prosp. 59, Moscow, 119333, Russian Federaion
b Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russian Federation
c Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
d Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
e HSE University, ul. Myasnitskaya 20, Moscow, 101000, Russian Federation

Over the past six years (2015—2021), many superconducting hydrides with critical temperatures Tc up +15ˆC, which are currently record high, have been discovered. Now, we can already say that a special field of superconductivity has developed: hydride superconductivity at ultrahigh pressures. For the most part, the properties of superhydrides are well described by the Migdal—Eliashberg theory of strong electron—phonon interactions, especially when the anharmonicity of phonons is taken into account. We investigate the isotope effect, the effect of a magnetic field (up to 60—70 T) on the critical temperature and critical current in the hydride samples, and the dependence of Tc on the pressure and the degree of doping. The divergences between the theory and experiment are of interest, especially in the regions of phase stability and in the behavior of the upper critical magnetic fields at low temperatures. We present a retrospective analysis of data from 2015—2021 and describe promising directions for future research on hydride superconductivity.

Fulltext pdf (1.1 MB)
To the readers pdf (115 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.05.039187
Keywords: high-temperature superconductivity, high pressures, hydrides
PACS: 74.25.−q, 74.70.−b (all)
DOI: 10.3367/UFNe.2021.05.039187
URL: https://ufn.ru/en/articles/2022/7/h/
001100230300009
2-s2.0-85134210660
2022PhyU...65..748T
Citation: Troyan I A, Semenok D V, Ivanova A G, Kvashnin A G, Zhou D, Sadakov A V, Sobolevsky O A, Pudalov V M, Lyubutin I S, Oganov A R "High-temperature superconductivity in hydrides" Phys. Usp. 65 748–761 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 12th, May 2021, 12th, May 2021

Оригинал: Троян И А, Семенок Д В, Иванова А Г, Квашнин А Г, Джоу Д, Садаков А В, Соболевский О А, Пудалов В М, Любутин И С, Оганов А Р «Высокотемпературная сверхпроводимость в гидридах» УФН 192 799–813 (2022); DOI: 10.3367/UFNr.2021.05.039187

References (165) Cited by (36) Similar articles (20) ↓

  1. M.V. Sadovskii “Limits of Eliashberg theory and bounds for superconducting transition temperaturePhys. Usp. 65 724–739 (2022)
  2. T.K. Kim, K.S. Pervakov et alNovel magnetic stoichiometric superconductor compound EuRbFe4As4Phys. Usp. 65 740–747 (2022)
  3. V.M. Pudalov, O.E. Omel’yanovskii et alV L Ginzburg and the development of experimental work on high-temperature superconductivity at LPI: ’iron superconductors’Phys. Usp. 54 648–653 (2011)
  4. Yu.F. Eltsev, K.S. Pervakov et alMagnetic and transport properties of single crystals of Fe-based superconductors of 122 familyPhys. Usp. 57 827–832 (2014)
  5. T.E. Kuzmicheva, S.A. Kuzmichev et alAndreev spectroscopy of iron-based superconductors: temperature dependence of the order parameters and scaling of ⊿L, S with TCPhys. Usp. 57 819–827 (2014)
  6. E.V. Antipov, A.M. Abakumov “Structural design of superconductors based on complex copper oxidesPhys. Usp. 51 180–190 (2008)
  7. V.L. Ginzburg “A few comments on superconductivity researchPhys. Usp. 48 173–176 (2005)
  8. G.E. Volovik “Exotic Lifshitz transitions in topological materialsPhys. Usp. 61 89–98 (2018)
  9. I.M. Eremin “Antiferromagnetism in iron-based superconductors: magnetic order in the model of delocalized electronsPhys. Usp. 57 807–813 (2014)
  10. M.M. Korshunov “Superconducting state in iron-based materials and spin-fluctuation pairing theoryPhys. Usp. 57 813–819 (2014)
  11. L.N. Dzhavadov, E.L. Gromnitskaya et alStudies of the thermodynamic, elastic, superconducting, and magnetic properties of substances at high pressuresPhys. Usp. 51 1066–1070 (2008)
  12. Superconductivity in iron-based compounds (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 29 January 2014)Phys. Usp. 57 807–832 (2014)
  13. The 100th anniversary of the birth of N E Alekseevskii (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 23 May 2012)Phys. Usp. 56 192–210 (2013)
  14. E.P. Krasnoperov “At the origins of applied superconductivityPhys. Usp. 56 202–204 (2013)
  15. G.V. Boriskov, A.I. Bykov et alResearch in ultrahigh magnetic field physicsPhys. Usp. 54 421–427 (2011)
  16. Celebrating the 65th anniversary of the Russian Federal Nuclear Center — All-Russian Research Institute of Experimental Physics (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 6 October 2010)Phys. Usp. 54 387–427 (2011)
  17. S.M. Stishov, L.G. Khvostantsev et alOn the 50th anniversary of the L F Vereshchagin Institute for High Pressure Physics, RAS (Scientific outreach session of the Physical Sciences Division of the Russian Academy of Sciences, 23 April 2008)Phys. Usp. 51 1055–1083 (2008)
  18. M.A. Obolenskii “Superconductivity and energy spectra of layered dichalcogenides of transition metalsSov. Phys. Usp. 31 956–957 (1988)
  19. I.O. Kulik “Superconductivity of narrow-band metals and semiconductors and the model of superconducting glassSov. Phys. Usp. 28 97–99 (1985)
  20. N.B. Brandt “The best years of my lifePhys. Usp. 56 192–198 (2013)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions