Issues

 / 

2022

 / 

July

  

Conferences and symposia


High-temperature superconductivity in hydrides

  a,  b,  a,   b,  b, §  c,  c, *  d, c, e, #  a, °  b
a Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninskii prosp. 59, Moscow, 119333, Russian Federaion
b Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russian Federation
c Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
d Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
e HSE University, ul. Myasnitskaya 20, Moscow, 101000, Russian Federation

Over the past six years (2015—2021), many superconducting hydrides with critical temperatures Tc up +15ˆC, which are currently record high, have been discovered. Now, we can already say that a special field of superconductivity has developed: hydride superconductivity at ultrahigh pressures. For the most part, the properties of superhydrides are well described by the Migdal—Eliashberg theory of strong electron—phonon interactions, especially when the anharmonicity of phonons is taken into account. We investigate the isotope effect, the effect of a magnetic field (up to 60—70 T) on the critical temperature and critical current in the hydride samples, and the dependence of Tc on the pressure and the degree of doping. The divergences between the theory and experiment are of interest, especially in the regions of phase stability and in the behavior of the upper critical magnetic fields at low temperatures. We present a retrospective analysis of data from 2015—2021 and describe promising directions for future research on hydride superconductivity.

Fulltext pdf (1.1 MB)
To the readers pdf (115 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.05.039187
Keywords: high-temperature superconductivity, high pressures, hydrides
PACS: 74.25.−q, 74.70.−b (all)
DOI: 10.3367/UFNe.2021.05.039187
URL: https://ufn.ru/en/articles/2022/7/h/
001100230300009
2-s2.0-85134210660
2022PhyU...65..748T
Citation: Troyan I A, Semenok D V, Ivanova A G, Kvashnin A G, Zhou D, Sadakov A V, Sobolevsky O A, Pudalov V M, Lyubutin I S, Oganov A R "High-temperature superconductivity in hydrides" Phys. Usp. 65 748–761 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 12th, May 2021, 12th, May 2021

Оригинал: Троян И А, Семенок Д В, Иванова А Г, Квашнин А Г, Джоу Д, Садаков А В, Соболевский О А, Пудалов В М, Любутин И С, Оганов А Р «Высокотемпературная сверхпроводимость в гидридах» УФН 192 799–813 (2022); DOI: 10.3367/UFNr.2021.05.039187

References (165) Cited by (36) ↓ Similar articles (20)

  1. Vučičević Jakša, Ferrero M Phys. Rev. B 109 (8) (2024)
  2. Semenok D V, Sadakov A V et al Materials Today Physics 49 101595 (2024)
  3. Azarevich A N, Bogach A V et al Pisʹma V žurnal êksperimentalʹnoj I Teoretičeskoj Fiziki 119 909 (2024)
  4. Sadakov A V, Vlasenko V A et al Phys. Rev. B 109 (22) (2024)
  5. Peng Ju, Dong H et al Phys. Rev. B 110 (18) (2024)
  6. Tantardini Ch, Iliaš Miroslav et al Computer Physics Communications 295 109002 (2024)
  7. Hirsch J E J Supercond Nov Magn 37 1785 (2024)
  8. Sadakov A V, Gippius A A et al Jetp Lett. 119 111 (2024)
  9. Gardew D Nanotechnology And Nanomaterials Vol. Advances in Nanofiber Research - Properties and UsesHigh-Temperature Superconductors7 Chapter 3 (2024)
  10. Zhou D, Semenok D et al Advanced Energy Materials 14 (23) (2024)
  11. Hirsch J E Physica C: Superconductivity And Its Applications 617 1354449 (2024)
  12. Azarevich A N, Bogach A V et al Jetp Lett. 119 934 (2024)
  13. Chukanov N V, Aksenov S M IJMS 25 10218 (2024)
  14. Novoselov D Y, Korotin D M et al Phys. Chem. Chem. Phys. 26 17854 (2024)
  15. Talantsev E F, Chistyakov V V Supercond. Sci. Technol. 37 095016 (2024)
  16. Hirsch J E 11 (7) (2024)
  17. Bondarenko S I, Timofeev V P et al 50 597 (2024)
  18. Redkov A Front. Chem. 11 (2023)
  19. Aksenov S M, Charkin D O et al J Struct Chem 64 1797 (2023)
  20. Gavriliuk A G, Struzhkin V V et al Jetp Lett. 117 126 (2023)
  21. Gavriliuk A G, Troyan I A et al Jetp Lett. 118 742 (2023)
  22. Sadakov A V, Vlasenko V A et al J. Phys. Chem. Lett. 14 6666 (2023)
  23. Zhou D, Semenok D V et al Phys. Rev. B 107 (6) (2023)
  24. Pavlov N S, Shein I R et al Pisʹma V žurnal êksperimentalʹnoj I Teoretičeskoj Fiziki 118 707 (2023)
  25. Hirsch J E J Supercond Nov Magn 36 1495 (2023)
  26. Gavrilyuk A G, Struzhkin V V et al Pisʹma V žurnal êksperimentalʹnoj I Teoretičeskoj Fiziki 117 132 (2023)
  27. Sergeyev D, Duisenova A et al Results In Physics 54 107140 (2023)
  28. Gavrilyuk A G, Troyan I A et al Pisʹma V žurnal êksperimentalʹnoj I Teoretičeskoj Fiziki 118 735 (2023)
  29. Hirsch J E, Marsiglio F J Supercond Nov Magn 36 1257 (2023)
  30. Pavlov N S, Shein I R et al Jetp Lett. 118 693 (2023)
  31. Hirsch J E J Supercond Nov Magn 36 1489 (2023)
  32. Sadakov A V, Sobolevsky O A, Pudalov V M Uspekhi Fizicheskikh Nauk 192 1409 (2022)
  33. [Sadakov A V, Sobolevsky O A, Pudalov V M Phys. Usp. 65 1313 (2022)]
  34. Talantsev E F Condensed Matter 7 65 (2022)
  35. Gavriliuk A G, Struzhkin V V et al Jetp Lett. 116 804 (2022)
  36. Semenok D V, Troyan I A et al Advanced Materials 34 (42) (2022)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions