Issues

 / 

2022

 / 

July

  

Conferences and symposia


High-temperature superconductivity in hydrides

  a,  b,  a,   b,  b, §  c,  c, *  d, c, e, #  a, °  b
a Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninskii prosp. 59, Moscow, 119333, Russian Federaion
b Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russian Federation
c Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
d Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
e National Research University Higher School of Economics, ul. Myasnitskaya 20, Moscow, 101000, Russian Federation

Over the past six years (2015—2021), many superconducting hydrides with critical temperatures Tc up +15ˆC, which are currently record high, have been discovered. Now, we can already say that a special field of superconductivity has developed: hydride superconductivity at ultrahigh pressures. For the most part, the properties of superhydrides are well described by the Migdal—Eliashberg theory of strong electron—phonon interactions, especially when the anharmonicity of phonons is taken into account. We investigate the isotope effect, the effect of a magnetic field (up to 60—70 T) on the critical temperature and critical current in the hydride samples, and the dependence of Tc on the pressure and the degree of doping. The divergences between the theory and experiment are of interest, especially in the regions of phase stability and in the behavior of the upper critical magnetic fields at low temperatures. We present a retrospective analysis of data from 2015—2021 and describe promising directions for future research on hydride superconductivity.

Fulltext pdf (1.1 MB)
To the readers pdf (115 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.05.039187
Keywords: high-temperature superconductivity, high pressures, hydrides
PACS: 74.25.−q, 74.70.−b (all)
DOI: 10.3367/UFNe.2021.05.039187
URL: https://ufn.ru/en/articles/2022/7/h/
001100230300009
2-s2.0-85134210660
2022PhyU...65..748T
Citation: Troyan I A, Semenok D V, Ivanova A G, Kvashnin A G, Zhou D, Sadakov A V, Sobolevsky O A, Pudalov V M, Lyubutin I S, Oganov A R "High-temperature superconductivity in hydrides" Phys. Usp. 65 748–761 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 12th, May 2021, 12th, May 2021

Оригинал: Троян И А, Семенок Д В, Иванова А Г, Квашнин А Г, Джоу Д, Садаков А В, Соболевский О А, Пудалов В М, Любутин И С, Оганов А Р «Высокотемпературная сверхпроводимость в гидридах» УФН 192 799–813 (2022); DOI: 10.3367/UFNr.2021.05.039187

References (165) ↓ Cited by (21) Similar articles (20)

  1. Wilson M N IEEE Trans. Appl. Supercond. 22 3800212 (2012)
  2. Klimenko E Yu Phys. Usp. 64 815 (2021); Klimenko E Yu Usp. Fiz. Nauk 191 861 (2021)
  3. Schilling A et al Nature 363 56 (1993)
  4. Putilin S N et al Nature 362 226 (1993)
  5. Drozdov A P et al Nature 525 73 (2015)
  6. Eremets M I, Drozdov A P Phys. Usp. 59 1154 (2016); Eremets M I, Drozdov A P Usp. Fiz. Nauk 186 1257 (2016)
  7. Drozdov A P et al Nature 569 528 (2019)
  8. Somayazulu M et al Phys. Rev. Lett. 122 027001 (2019)
  9. Oganov A R, Glass C W J. Chem. Phys. 124 244704 (2006)
  10. Glass C W, Oganov A R, Hansen N Comput. Phys. Commun. 175 713 (2006)
  11. Oganov A R, Lyakhov A O, Valle M Acc. Chem. Res. 44 227 (2011)
  12. Lyakhov A O et al Comput. Phys. Commun. 184 1172 (2013)
  13. Oganov A R et al Nature 457 863 (2009)
  14. Utyuzh A N, Mikheyenkov A V Phys. Usp. 60 886 (2017); Utyuzh A N, Mikheyenkov A V Usp. Fiz. Nauk 187 953 (2017)
  15. Duan D et al Sci. Rep. 4 6968 (2014)
  16. Kong P et al 26th AIRAPT Intern. Conf. on High Pressure Science and Technology, Beijing, China, August 18th - 23rd, 2017, Book of Abstract p. 347
  17. Geballe Z M et al Angew. Chem. Int. Ed. 57 688 (2018)
  18. Liu H et al Proc. Natl. Acad. Sci. USA 114 6990 (2017)
  19. Peng F et al Phys. Rev. Lett. 119 107001 (2017)
  20. Masafumi S et al Supercond. Sci. Technol. 33 114004 (2020)
  21. Kuzovnikov M A XXXVI Intern. Conf. On Interaction Of Intense Energy Fluxes With Matter, ELBRUS2021, 1 - 6 March 2021, Elbrus, Kabardino-Balkaria, Russia, Book Of Abstract (Eds V E Fortov et al.) (Moscow: Joint Inst. for High Temperatures RAS, 2021) p. 157
  22. Pépin C M et al Science 357 382 (2017)
  23. Bazhanova Z G, Oganov A R, Gianola O Phys. Usp. 55 489 (2012); Bazhanova Z G, Oganov A R, Gianola O Usp. Fiz. Nauk 182 521 (2012)
  24. Zhou D et al J. Am. Chem. Soc. 142 2803 (2020)
  25. Zhou D et al Sci. Adv. 6 eaax6849 (2020)
  26. Kruglov I A et al Sci. Adv. 4 eaat9776 (2018)
  27. Semenok D V et al Mater. Today 33 36 (2020)
  28. Salke N P et al Nat. Commun. 10 4453 (2019)
  29. Li X et al Nat. Commun. 10 3461 (2019)
  30. Troyan I A et al Adv. Mater. 33 2006832 (2021)
  31. Kong P et al Nat. Commun. 12 5075 (2021)
  32. Sun Y et al Phys. Rev. Lett. 123 097001 (2019)
  33. Xie H et al J. Phys. Condens. Matter 31 245404 (2019)
  34. Liang X et al Phys. Rev. B 99 100505 (2019)
  35. Sukmas W et al J. Alloys Compd. 849 156434 (2020)
  36. Semenok D V et al Curr. Opin. Solid State Mater. Sci. 24 100808 (2020)
  37. Snider E et al Nature 586 373 (2020)
  38. Di Cataldo S et al Phys. Rev. B 104 L020511 (2021)
  39. Gao M et al Phys. Rev. B 104 L100504 (2021)
  40. Belli F et al Nat. Commun. 12 5381 (2021)
  41. Bi T et al "The search for superconductivityhigh pressure hydrides" Reference Module In Chemistry, Molecular Sciences And Chemical Engineering (Amsterdam: Elsevier, 2019); Bi T et al arXiv:1806.00163
  42. Zurek E, Bi T J. Chem. Phys. 150 050901 (2019)
  43. Semenok D V et al J. Phys. Chem. Lett. 12 32 (2021)
  44. Chen W et al Nat. Commun. 12 273 (2021)
  45. Semenok D, Private communication
  46. Fratanduono D E et al Phys. Rev. Lett. 124 015701 (2020)
  47. Eremets M I et al Nat. Phys. 15 1246 (2019)
  48. Loubeyre P, Occelli F, Dumas P Nature 577 631 (2020)
  49. Gregoryanz E et al Matter Radiat. Extremes 5 038101 (2020)
  50. Guan P-W, Hemley R J, Viswanathan V Proc. Natl. Acad. Sci. 118 e2110470118 (2021)
  51. Wang H et al Phys. Rev. Lett. 126 117002 (2021)
  52. Yan J et al arXiv:2104.03610
  53. Bykova E et al Phys. Rev. B 103 L140105 (2021)
  54. Laniel D et al Phys. Rev. B 102 134109 (2020)
  55. Allen P B, Dynes R C Phys. Rev. B 12 905 (1975)
  56. Ge Y et al Mater. Today Phys. 15 100330 (2020)
  57. Hu S X et al arXiv:2012.10259
  58. Wang T et al Phys. Rev. B 104 064510 (2021)
  59. Hirsch J E, Marsiglio F Nature 596 E9 (2021)
  60. Hirsch J E Physica C 1353964 (2021)
  61. Bloch F Z. Phys. 59 208 (1930)
  62. Grüneisen E Ann. Physik 408 530 (1933)
  63. Liu L et al Phys. Rev. B 99 140501 (2019)
  64. Tsuppayakorn-aek P et al Mater. Res. Express 7 086001 (2020)
  65. Quan Y, Pickett W E Phys. Rev. B 93 104526 (2016)
  66. Guigue B, Marizy A, Loubeyre P Phys. Rev. B 102 014107 (2020)
  67. Gor’kov L P Superconductivity Vol. 1 Conventional And Unconventional Superconductors (Eds K H Bennemann, J B Ketterson) (Berlin: Springer, 2008) p. 201
  68. Shen G, H K Rep. Prog. Phys. 80 016101 (2017)
  69. Schultz E et al High Pressure Res. 25 71 (2005)
  70. Dubrovinsky L et al High Pressure Res. 30 620 (2010)
  71. Dubrovinskaia N, Dubrovinsky L Phys. Scr. 93 062501 (2018)
  72. Ji C et al Nature 573 558 (2019)
  73. Snider E et al Phys. Rev. Lett. 126 117003 (2021)
  74. Holtgrewe N et al High Pressure Res. 39 457 (2019)
  75. Capitani F et al Nat. Phys. 13 859 (2017)
  76. Rosa A D et al High Pressure Res. 40 65 (2020)
  77. Talantsev E F Supercond. Sci. Technol. 33 094009 (2020)
  78. Talantsev E F, Stolze K Supercond. Sci. Technol. 34 064001 (2021)
  79. Peña-Alvarez M et al J. Phys. Chem. Lett. 12 4910 (2021)
  80. Koshoji R et al Phys. Rev. E 103 023307 (2021)
  81. Koshoji R, Ozaki T Phys. Rev. E 104 024101 (2021)
  82. Weir C E et al J. Res. Natl. Bureau Stand. A 63 55 (1959)
  83. Mao H K Science 200 1145 (1978)
  84. Flores-Livas J A et al Phys. Rep. 856 1 (2020)
  85. Guo J Adv. Mater. 31 1807240 (2019)
  86. Dubrovinskaia N et al Sci. Adv. 2 e1600341 (2016)
  87. Boehler R et al High Pressure Res. 24 391 (2004)
  88. Chellappa R S et al J. Chem. Phys. 131 224515 (2009)
  89. Song Y Phys. Chem. Chem. Phys. 15 14524 (2013)
  90. Potter R G et al J. Phys. Chem. C 118 7280 (2014)
  91. Gutowski M S, Autrey T Chem. World 3 (3) 44 (2006)
  92. Frueh S et al Inorg. Chem. 50 783 (2011)
  93. Ashcroft N W Phys. Rev. Lett. 92 187002 (2004)
  94. Liu H Y et al Phys. Rev. B 98 100102 (2018)
  95. Heil C et al Phys. Rev. B 99 220502 (2019)
  96. Kvashnin A G et al ACS Appl. Mater. Interfaces 10 43809 (2018)
  97. Chen W et al Phys. Rev. Lett. 127 117001 (2021)
  98. Li B et al J. Appl. Phys. 126 235901 (2019)
  99. Mahdi Davari Esfahani M et al Sci. Rep. 6 22873 (2016)
  100. Hong F et al arXiv:2101.02846
  101. Flores-Livas J A et al Phys. Rev. B 93 020508 (2016)
  102. Drozdov A P, Eremets M I, Troyan I A arXiv:1508.06224
  103. Hou P et al RSC Adv. 5 5096 (2015)
  104. Goncharenko I et al Phys. Rev. Lett. 100 045504 (2008)
  105. Hou P et al Phys. Rev. B 103 134305 (2021)
  106. Wang H et al Proc. Natl. Acad. Sci. USA 109 6463 (2012)
  107. Ma L et al arXiv:2103.16282
  108. Zheng X H, Zheng J X Solid State Commun. 331 114295 (2021)
  109. Jia Y et al Appl. Phys. Lett. 93 032503 (2008)
  110. Errea I et al Phys. Rev. Lett. 114 157004 (2015)
  111. Errea I et al Nature 578 66 (2020)
  112. Errea I et al Phys. Rev. Lett. 111 177002 (2013)
  113. Shapeev A V Multiscale Model. Simul. 14 1153 (2016)
  114. Ladygin V V et al Comput. Mater. Sci. 172 109333 (2020)
  115. Podryabinkin E V, Shapeev A V Comput. Mater. Sci. 140 171 (2017)
  116. Dickey J M, Paskin A Phys. Rev. 188 1407 (1969)
  117. Semenok D V et al Mater. Today 48 18 (2021)
  118. Migdal A B Sov. Phys. JETP 7 996 (1958); Migdal A B Zh. Eksp. Teor. Fiz. 34 1438 (1958)
  119. Eliashberg G M Sov. Phys. JETP 11 696 (1960); Eliashberg G M Zh. Eksp. Teor. Fiz. 38 966 (1960)
  120. Kruglov I A et al Phys. Rev. B 101 024508 (2020)
  121. Kostrzewa M et al Sci. Rep. 8 11957 (2018)
  122. Lüders M et al Phys. Rev. B 72 024545 (2005)
  123. Marques M A L et al Phys. Rev. B 72 024546 (2005)
  124. Tsutsumi K et al Phys. Rev. B 102 214515 (2020)
  125. Floris A et al Physica C 456 45 (2007)
  126. Sanna A, Pellegrini C, Gross E K U Phys. Rev. Lett. 125 057001 (2020)
  127. Flores-Livas J A, Sanna A, Gross E K U Eur. Phys. J. B 89 63 (2016)
  128. Sanna A et al J. Phys. Soc. Jpn. 87 041012 (2018)
  129. Wang C, Yi S, Cho J-H Phys. Rev. B 101 104506 (2020)
  130. Giustino F, Cohen M L, Louie S G Phys. Rev. B 76 165108 (2007)
  131. Poncé S et al Comput. Phys. Commun. 209 116 (2016)
  132. Margine E R, Giustino F Phys. Rev. B 87 024505 (2013)
  133. van der Pauw L J Philips Res. Rep. 13 1 (1958)
  134. van der Pauw L J Philips Tech. Rev. 20 220 (1958)
  135. Lamichhane A et al J. Chem. Phys. 155 114703 (2021)
  136. Chen W, Private communication
  137. Einaga M et al Nat. Phys. 12 835 (2016)
  138. Huang X et al Natl. Sci. Rev. 6 713 (2019)
  139. Hong F et al Chinese Phys. Lett. 37 107401 (2020)
  140. Buhot J Conf. On Science At Extreme Conditions, CSEC-2021, 26-30 July 2021, Edinburgh, UK (Bristol: IOP, 2021)
  141. Li Z et al Nat. Commun. 13 2863 (2022)
  142. Hirsch J E, Marsiglio F Physica C 587 1353896 (2021)
  143. Hirsch J E, Marsiglio F Physica C 584 1353866 (2021)
  144. Dogan M, Cohen M L Physica C 583 1353851 (2021)
  145. Hirsch J E, Marsiglio F Phys. Rev. B 103 134505 (2021)
  146. Meissner W, Ochsenfeld R Naturwissenschaften 21 787 (1933)
  147. Pudalov V M Phys. Usp. 64 3 (2021); Pudalov V M Usp. Fiz. Nauk 191 3 (2021)
  148. Vedeneev S I et al Phys. Rev. B 87 134512 (2013)
  149. Abdel-Hafiez M et al Phys. Rev. B 91 165109 (2015)
  150. Vlasenko V A et al Supercond. Sci. Technol. 34 035019 (2021)
  151. Troyan I et al Science 351 1303 (2016)
  152. Struzhkin V et al Matter Radiat. Extremes 5 028201 (2020)
  153. Minkov V et al Research Square (2021)
  154. Hirsch J E arXiv:2109.08517
  155. Bean C P Rev. Mod. Phys. 36 31 (1964)
  156. Gokhfeld D M et al J. Appl. Phys. 109 033904 (2011)
  157. Gokhfeld D M Tech. Phys. Lett. 45 1 (2019); Gokhfeld D M Pis’ma Zh. Tekh. Fiz. 45 (2) 3 (2019)
  158. Bjørk R, Bahl C R H Appl. Phys. Lett. 103 102403 (2013)
  159. Prozorov R, Kogan V G Phys. Rev. Appl. 10 014030 (2018)
  160. Hirsch J E, Marsiglio F arXiv:2109.10878
  161. Brorson S D et al Phys. Rev. Lett. 64 2172 (1990)
  162. Mozaffari S et al Nat. Commun. 10 2522 (2019)
  163. Sun D et al Nat. Commun. 12 6863 (2021)
  164. Andreev A F Sov. Phys. JETP 19 1228 (1964); Andreev A F Zh. Eksp. Teor. Fiz. 46 1823 (1964)
  165. Cao Z-Y et al arXiv:2103.04070

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions