Issues

 / 

2022

 / 

April

  

Methodological notes


Light diffraction in a plane-parallel layered structure with the parameters of a Pendry lens

 
Kuban State Tekhnological University, Moskovskaya st. 2, Krasnodar, 350072, Russian Federation

The solution of Maxwell's equations for a plane electromagnetic wave and a Gaussian beam propagating in a Pendry lens has been obtained. The mathematical form of the solution explains details of image formation in such a structure. It is shown that not only the plane wave but also the Gaussian beam in this case is characterized by the absence of diffraction, so the Gaussian beam does not expand when propagated in a multilayer Pendry lens of any size.

Fulltext pdf (482 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.07.039002
Keywords: Maxwell's equations, metal—dielectric piecewise homogeneous medium, Pendry lens, Gaussian beam diffraction
PACS: 03.50.De, 42.25.−p, 42.79.−e, 78.67.−n (all)
DOI: 10.3367/UFNe.2021.07.039002
URL: https://ufn.ru/en/articles/2022/4/d/
000830885800001
2-s2.0-85145436425
2022PhyU...65..406S
Citation: Selina N V "Light diffraction in a plane-parallel layered structure with the parameters of a Pendry lens" Phys. Usp. 65 406–414 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 17th, October 2020, revised: 29th, June 2021, 1st, July 2021

Оригинал: Селина Н В «Дифракция света в плоскопараллельной слоистой структуре с параметрами линзы Пендри» УФН 192 443–452 (2022); DOI: 10.3367/UFNr.2021.07.039002

References (42) ↓ Cited by (3) Similar articles (20)

  1. Klimov V V Nanoplazmonika (M.: Fizmatlit, 2009); Klimov V V Nanoplasmonics (Singapore: Pan Sanford Publ., 2014)
  2. Sadatgol M et al Phys. Rev. Lett. 115 035502 (2015)
  3. Savo S, Di Gennaro E, Andreone A Opt. Express 17 19848 (2009)
  4. Klimov V V Usp. Fiz. Nauk 191 1044 (2021); Klimov V V Phys. Usp. 64 990 (2021)
  5. Davidovich M V Usp. Fiz. Nauk 189 1249 (2019); Davidovich M V Phys. Usp. 62 1173 (2019)
  6. Rybin M V, Limonov M F Usp. Fiz. Nauk 189 881 (2019); Rybin M V, Limonov M F Phys. Usp. 62 823 (2019)
  7. Remnev M A, Klimov V V Usp. Fiz. Nauk 188 169 (2018); Remnev M A, Klimov V V Phys. Usp. 61 157 (2018)
  8. Kil’dishev A V, Shalaev V M Usp. Fiz. Nauk 181 59 (2011); Kildishev A V, Shalaev V M Phys. Usp. 54 53 (2011)
  9. Melent’ev P N, Balykin V I Usp. Fiz. Nauk 189 282 (2019); Melentiev P N, Balykin V I Phys. Usp. 62 267 (2019)
  10. Balykin V I, Melent’ev P N Usp. Fiz. Nauk 188 143 (2018); Balykin V I, Melentiev P N Phys. Usp. 61 133 (2018)
  11. Lepeshov S I i dr Usp. Fiz. Nauk 188 1137 (2018); Lepeshov S I et al Phys. Usp. 61 1035 (2018)
  12. Popov N L i dr Usp. Fiz. Nauk 190 820 (2020); Popov N L et al Phys. Usp. 63 766 (2020)
  13. Petrov V M i dr Usp. Fiz. Nauk 191 760 (2021); Petrov V M et al Phys. Usp. 64 722 (2021)
  14. Veselago V G Usp. Fiz. Nauk 92 517 (1967); Veselago V G Sov. Phys. Usp. 10 509 (1968)
  15. Pendry J B Phys. Rev. Lett. 85 3966 (2000)
  16. Adams W et al New J. Phys. 18 125004 (2016)
  17. Parimi P V et al Nature 426 404 (2003)
  18. Fang N et al Science 308 534 (2005)
  19. Mandel’shtam L I "Lektsii po nekotorym voprosam teorii kolebanii (1944 g.). Chetvertaya lektsiya" Lektsii Po Optike, Teorii Otnositel’nosti i Kvantovoi Mekhanike (M.: Nauka, 1972) p. 431
  20. Barnes W L, Dereux A, Ebbesen T W Nature 424 824 (2003)
  21. Podolskiy V A, Kuhta N A, Milton N A Appl. Phys. Lett. 87 231113 (2005)
  22. Shevchenko V V Usp. Fiz. Nauk 181 1171 (2011); Shevchenko V V Phys. Usp. 54 1131 (2011); Shevchenko V V Usp. Fiz. Nauk 182 342 (2012); Shevchenko V V Phys. Usp. 55 324 (2012)
  23. Burov V A i dr Usp. Fiz. Nauk 181 1205 (2011); Burov V A et al Phys. Usp. 54 1165 (2011)
  24. Dorofeenko A V Radiotekhnika Elektronika 52 1116 (2007); Dorofeenko A V J. Commun. Technol. Electron. 52 1031 (2007)
  25. Shatrov A D Radiotekhnika Elektronika 52 1430 (2007); Shatrov A D J. Commun. Technol. Electron. 52 1324 (2007)
  26. Anyutin A P, Shatrov A D Radiotekhnika Elektronika 57 1012 (2012); Anyutin A P, Shatrov A D J. Commun. Technol. Electron. 57 1024 (2012)
  27. Hartman Ph Ordinary Differential Equations (New York: Wiley, 1964); Per. na russk. yaz., Khartman F Obyknovennye Differentsial’nye Uravneniya (M.: Mir, 1970)
  28. Born M, Wolf E Principles Of Optics (Oxford: Pergamon Press, 1968); Per. na russk. yaz., Born M, Vol’f E Osnovy Optiki (M.: Nauka, 1973)
  29. Pendry J B Opt. Express 11 755 (2003)
  30. Melville D O S, Blaikie R J Opt. Express 13 2127 (2005)
  31. Ramakrishna S A et al J. Mod. Opt. 50 1419 (2003)
  32. Nielsen R B et al Appl. Phys. B 100 93 (2010)
  33. Selina N V, Tumaev E N Rossiiskie Nanotekhnologii 11 (5-6) 78 (2016); Selina N V, Tumayev E N Nanotechnol. Russia 11 349 (2016)
  34. Selina N V Komp’yuternaya Optika 44 552 (2020)
  35. Selina N V Optika Spektroskopiya 127 648 (2019); Selina N V Opt. Spectrosc. 127 700 (2019)
  36. Selina N V Rossiiskie Nanotekhnologii 14 (9-10) 59 (2019); Selina N V Nanotechnol. Russia 14 451 (2019)
  37. Selina N V Nanostruktury. Matematicheskaya Fizika Modelirovanie 18 (1) 45 (2018)
  38. Selina N V Kompozity Nanostruktury 11 (1) 28 (2019)
  39. Selina N V Kompozity Nanostruktury 11 (3) 95 (2019)
  40. Landau L D, Lifshits E M Elektrodinamika Sploshnykh Sred (M.: Fizmatlit, 2003); Per. na angl. yaz., Landau L D, Lifshitz E M Electrodynamics Of Continuous Media (Oxford: Pergamon Press, 1984)
  41. Baburin A S et al Opt. Mater. Express 9 611 (2019)
  42. Goncharenko A M Gaussovy Puchki Sveta (Minsk: Nauka i tekhnika, 1977)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions