Issues

 / 

2022

 / 

October

  

Reviews of topical problems


Nonlinear dynamics and machine learning of recurrent spiking neural networks

 , , ,
Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation

Major achievements in designing and analyzing recurrent spiking neural networks intended for modeling functional brain networks are reviewed. Key terms and definitions employed in machine learning are introduced. The main approaches to the development and exploration of spiking and rate neural networks trained to perform specific cognitive functions are presented. State-of-the-art neuromorphic hardware systems simulating information processing by the brain are described. Concepts of nonlinear dynamics are discussed, which enable identification of the mechanisms used by neural networks to perform target tasks.

Fulltext pdf (2.1 MB)
To the readers pdf (115 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.08.039042
Keywords: artificial neural networks, nonlinear dynamics, machine learning, spiking neurons, modeling of cognitive functions
PACS: 07.05.Mh, 84.35.+i, 87.19.L− (all)
DOI: 10.3367/UFNe.2021.08.039042
URL: https://ufn.ru/en/articles/2022/10/b/
001112536300002
2-s2.0-85182910380
2022PhyU...65.1020M
Citation: Maslennikov O V, Pugavko M M, Shchapin D S, Nekorkin V I "Nonlinear dynamics and machine learning of recurrent spiking neural networks" Phys. Usp. 65 1020–1038 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 1st, June 2021, revised: 13th, August 2021, 13th, August 2021

Оригинал: Масленников О В, Пугавко М М, Щапин Д С, Некоркин В И «Нелинейная динамика и машинное обучение рекуррентных спайковых нейронных сетей» УФН 192 1089–1109 (2022); DOI: 10.3367/UFNr.2021.08.039042

References (162) Cited by (4) Similar articles (20) ↓

  1. A.N. Pavlov, A.E. Hramov et alWavelet analysis in neurodynamicsPhys. Usp. 55 845–875 (2012)
  2. A.N. Pisarchik, A.E. Hramov “Stochastic processes in the brain's neural network and their impact on perception and decision-makingPhys. Usp. 66 1224–1247 (2023)
  3. M.I. Rabinovich, M.K. Muezzinoglu “Nonlinear dynamics of the brain: emotion and cognitionPhys. Usp. 53 357–372 (2010)
  4. O.V. Maslennikov, V.I. Nekorkin “Adaptive dynamical networksPhys. Usp. 60 694–704 (2017)
  5. V.V. Klinshov, V.I. Nekorkin “Synchronization of delay-coupled oscillator networksPhys. Usp. 56 1217–1229 (2013)
  6. A.E. Hramov, N.S. Frolov et alFunctional networks of the brain: from connectivity restoration to dynamic integrationPhys. Usp. 64 584–616 (2021)
  7. G.N. Borisyuk, R.M. Borisyuk et alModels of neural dynamics in brain information processing — the developments of ’the decade’Phys. Usp. 45 1073–1095 (2002)
  8. M.A. Tsyganov, V.N. Biktashev et alWaves in systems with cross-diffusion as a new class of nonlinear wavesPhys. Usp. 50 263–286 (2007)
  9. A.I. Musorin, A.S. Shorokhov et alPhotonics approaches to the implementation of neuromorphic computingPhys. Usp. 66 1211–1223 (2023)
  10. Yu.M. Romanovsky, A.N. Tikhonov “Molecular energy transducers of the living cell. Proton ATP synthase: a rotating molecular motorPhys. Usp. 53 893–914 (2010)
  11. L.V. Doronina-Amitonova, I.V. Fedotov et alNeurophotonics: optical methods to study and control the brainPhys. Usp. 58 345–364 (2015)
  12. Yu.M. Romanovsky, V.P. Trifonenkov “Energetics and stochastic dynamics of intraneuron transportPhys. Usp. 59 121–140 (2016)
  13. G.R. Ivanitskii “The self-organizing dynamic stability of far-from-equilibrium biological systemsPhys. Usp. 60 705–730 (2017)
  14. N.D. Kondratyuk, V.V. Pisarev “Theoretical and computational approaches to predicting the viscosity of liquidsPhys. Usp. 66 410–432 (2023)
  15. P.N. Zakharov, V.K. Arzhanik et alMicrotubule: a dynamically unstable stochastic phase switching polymerPhys. Usp. 59 773–786 (2016)
  16. A.A. Koronovskii, O.I. Moskalenko, A.E. Hramov “On the use of chaotic synchronization for secure communicationPhys. Usp. 52 1213–1238 (2009)
  17. A.E. Dubinov, I.Yu. Kornilova, V.D. Selemir “Collective ion acceleration in systems with a virtual cathodePhys. Usp. 45 1109–1129 (2002)
  18. V.S. Anishchenko, A.B. Neiman et alStochastic resonance: noise-enhanced orderPhys. Usp. 42 7–36 (1999)
  19. V.G. Boiko, Kh.I. Mogel’ et alFeatures of metastable states in liquid-vapor phase transitionsSov. Phys. Usp. 34 (2) 141–159 (1991)
  20. B.S. Kerner, V.V. Osipov “Self-organization in active distributed media: scenarios for the spontaneous formation and evolution of dissipative structuresSov. Phys. Usp. 33 (9) 679–719 (1990)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions