Issues

 / 

2021

 / 

September

  

Reviews of topical problems


Theory of optically detected spin noise in nanosystems

  a, b,   c, §  a
a Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation
b Spin Optics Laboratory, St. Petersburg State University, ul. Ulyanovskaya 1, Saint-Petersburg, 198504, Russian Federation
c Lomonosov Moscow State University, Vorobevy Gory, Moscow, 119991, Russian Federation

The theory of spin noise in low-dimensional systems and bulk semiconductors is reviewed. Spin noise is usually detected by optical means continuously measuring the rotation angle of the polarization direction of a probe beam passing through a sample. Spin noise spectra yield rich information about the spin properties of the system, for example, g-factors of the charge carriers, spin relaxation times, parameters of the hyperfine interaction, spin-orbit coupling constants, and frequencies and widths of the optical resonances. The review describes basic models of spin noise, methods to theoretically describe it, and its relation to experimental results. We also discuss the relation between spin noise spectroscopy and strong and weak quantum measurements, as well as spin flip Raman scattering, and analyze similar effects, including manifestations of the charge, current, and valley polarization fluctuations in the optical response. Possible directions for further development of spin noise spectroscopy are outlined.

Fulltext pdf (1.5 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.10.038861
Keywords: spin noise, spin correlation functions, nanosystems, quantum dots, nanowires, quantum wells, spin Faraday effect, hyperfine interaction, exchange interaction, spin-orbit coupling
PACS: 72.70.+m, 78.67.−n (all)
DOI: 10.3367/UFNe.2020.10.038861
URL: https://ufn.ru/en/articles/2021/9/c/
000722209600003
2-s2.0-85120789703
2021PhyU...64..923S
Citation: Smirnov D S, Mantsevich V N, Glazov M M "Theory of optically detected spin noise in nanosystems" Phys. Usp. 64 923–946 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 6th, July 2020, 25th, October 2020

Оригинал: Смирнов Д С, Манцевич В Н, Глазов М М «Теория оптически детектируемых спиновых флуктуаций в наносистемах» УФН 191 973–998 (2021); DOI: 10.3367/UFNr.2020.10.038861

References (200) Cited by (18) Similar articles (20) ↓

  1. M.A. Semina, R.A. Suris “Localized excitons and trions in semiconductor nanosystems65 111–130 (2022)
  2. M.V. Durnev, M.M. Glazov “Excitons and trions in two-dimensional semiconductors based on transition metal dichalcogenides61 825–845 (2018)
  3. M.M. Glazov, R.A. Suris “Collective states of excitons in semiconductors63 1051–1071 (2020)
  4. Yu.V. Vladimirova, V.N. Zadkov “Quantum optics of quantum emitters in the near field of a nanoparticle65 245–269 (2022)
  5. M.I. Tribelsky, A.E. Miroshnichenko “Resonant scattering of electromagnetic waves by small metal particles65 40–61 (2022)
  6. G.P. Zhigal’skii “Nonequilibrium 1/f γ noise in conducting films and contacts46 449–471 (2003)
  7. S.I. Lepeshov, A.E. Krasnok et alHybrid nanophotonics61 1035–1050 (2018)
  8. I.S. Osad’ko “Blinking fluorescence of single semiconductor nanocrystals: basic experimental facts and the theoretical models of blinking59 462–474 (2016)
  9. M.A. Remnev, V.V. Klimov “Metasurfaces: a new look at Maxwell's equations and new ways to control light61 157–190 (2018)
  10. Sh.M. Kogan “Low-frequency current noise with a 1/f spectrum in solids28 170–195 (1985)
  11. V.V. Klimov “Control of the emission of elementary quantum systems using metamaterials and nanometaparticles64 990–1020 (2021)
  12. V.V. Klimov “Optical nanoresonators66 263–287 (2023)
  13. V.E. Bisti, A.B. Van’kov et alMagnetoexcitons in two-dimensional electronic systems58 315–329 (2015)
  14. V.I. Balykin, P.N. Melentiev “Optics and spectroscopy of a single plasmonic nanostructure61 133–156 (2018)
  15. G.P. Zhigal’skii “1/f noise and nonlinear effects in thin metal films40 599–622 (1997)
  16. L.M. Martyushev “Мaximum entropy production principle: history and current status64 558–583 (2021)
  17. K.V. Baryshnikova, S.S. Kharintsev et alMetalenses for subwavelength imaging65 355–378 (2022)
  18. R.T. Sibatov, V.V. Uchaikin “Fractional differential approach to dispersive transport in semiconductors52 1019–1043 (2009)
  19. M.B. Menskii “Decoherence and the theory of continuous quantum measurements41 923–940 (1998)
  20. A.G. Syromyatnikov, S.V. Kolesnikov et alFormation and properties of metallic atomic chains and wires64 671–701 (2021)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions