Issues

 / 

2021

 / 

September

  

Reviews of topical problems


Theory of optically detected spin noise in nanosystems

  a, b,   c, §  a
a Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation
b Spin Optics Laboratory, St. Petersburg State University, ul. Ulyanovskaya 1, Saint-Petersburg, 198504, Russian Federation
c Lomonosov Moscow State University, Vorobevy Gory, Moscow, 119991, Russian Federation

The theory of spin noise in low-dimensional systems and bulk semiconductors is reviewed. Spin noise is usually detected by optical means continuously measuring the rotation angle of the polarization direction of a probe beam passing through a sample. Spin noise spectra yield rich information about the spin properties of the system, for example, g-factors of the charge carriers, spin relaxation times, parameters of the hyperfine interaction, spin-orbit coupling constants, and frequencies and widths of the optical resonances. The review describes basic models of spin noise, methods to theoretically describe it, and its relation to experimental results. We also discuss the relation between spin noise spectroscopy and strong and weak quantum measurements, as well as spin flip Raman scattering, and analyze similar effects, including manifestations of the charge, current, and valley polarization fluctuations in the optical response. Possible directions for further development of spin noise spectroscopy are outlined.

Fulltext pdf (1.5 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.10.038861
Keywords: spin noise, spin correlation functions, nanosystems, quantum dots, nanowires, quantum wells, spin Faraday effect, hyperfine interaction, exchange interaction, spin-orbit coupling
PACS: 72.70.+m, 78.67.−n (all)
DOI: 10.3367/UFNe.2020.10.038861
URL: https://ufn.ru/en/articles/2021/9/c/
000722209600003
2-s2.0-85120789703
2021PhyU...64..923S
Citation: Smirnov D S, Mantsevich V N, Glazov M M "Theory of optically detected spin noise in nanosystems" Phys. Usp. 64 923–946 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 6th, July 2020, 25th, October 2020

Оригинал: Смирнов Д С, Манцевич В Н, Глазов М М «Теория оптически детектируемых спиновых флуктуаций в наносистемах» УФН 191 973–998 (2021); DOI: 10.3367/UFNr.2020.10.038861

References (200) Cited by (20) ↓ Similar articles (20)

  1. Kozlov G G, Ryzhov I I et al Uspekhi Fizicheskikh Nauk 194 268 (2024)
  2. [Kozlov G G, Ryzhov I I et al Phys. Usp. 67 251 (2024)]
  3. Maslova N S, Mantsevich V N et al Phys. Rev. E 110 (4) (2024)
  4. Shamirzaev T S, Shumilin A V et al Nanomaterials 13 729 (2023)
  5. Kozlov V O, Ryzhov I I et al Journal Of Non-Crystalline Solids 621 122610 (2023)
  6. Yarmohammadi M, Bolsmann K et al Phys. Rev. B 107 (12) (2023)
  7. Sterin P, Hühn K et al Phys. Rev. B 108 (12) (2023)
  8. Kozlov V O, Kuznetsov N S et al Phys. Rev. B 107 (6) (2023)
  9. Kleinjohann I, Fischer A et al Phys. Rev. B 105 (19) (2022)
  10. Kozlov V  O, Kuznetsov N  S et al Phys. Rev. Lett. 129 (7) (2022)
  11. Rittmann C, Petrov M Yu et al Phys. Rev. B 106 (3) (2022)
  12. Fischer A, Kleinjohann I et al Phys. Rev. B 105 (3) (2022)
  13. Shalygin V A Springer Proceedings In Physics Vol. Optics and Its ApplicationsCurrent-Induced Optical Activity: First Observation and Comprehensive Study281 Chapter 1 (2022) p. 1
  14. Semina M A, Glazov M M et al Phys. Rev. B 106 (3) (2022)
  15. Sifft M, Kurzmann A et al Phys. Rev. Research 3 (3) (2021)
  16. Shumilin A  V, Smirnov D  S Phys. Rev. Lett. 126 (21) (2021)
  17. Schering P, Evers E et al Phys. Rev. B 103 (20) (2021)
  18. Leppenen N V, Lanco L, Smirnov D S Phys. Rev. B 103 (4) (2021)
  19. Fomin A A, Petrov M Yu et al Phys. Rev. A 103 (4) (2021)
  20. Smirnov D S, Zhukov E A et al Phys. Rev. B 102 (23) (2020)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions