Issues

 / 

2021

 / 

July

  

Instruments and methods of investigation


Broadband integrated optical modulators: achievements and prospects

  a,   b, §  b, *  b, #  b
a ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg, 197101, Russian Federation
b Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation

Broadband integrated optical modulators are key elements of modern optical information systems. The three main technological material platforms for their manufacture are considered: lithium niobate, III—V semiconductors, and silicon. Progress achieved in the development of integrated optical modulators is analyzed, and the main parameters of modulators obtained for various materials are compared with requirements for practical applications. Directions in the further development of the technology of modulators related to new problems in optical information systems are discussed.

Fulltext pdf (799 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.11.038871
Keywords: electro-optic effect, microwave integrated optical modulators
PACS: 42.79.−e, 42.79.Hp, 78.20.Ls (all)
DOI: 10.3367/UFNe.2020.11.038871
URL: https://ufn.ru/en/articles/2021/7/d/
Citation: Petrov V M, Agruzov P M, Lebedev V V, Il’ichev I V, Shamray A V "Broadband integrated optical modulators: achievements and prospects" Phys. Usp. 64 722–739 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 20th, May 2020, revised: 16th, November 2020, 18th, November 2020

Оригинал: Петров В М, Агрузов П М, Лебедев В В, Ильичев И В, Шамрай А В «Широкополосные интегрально-оптические модуляторы: достижения и перспективы развития» УФН 191 760–780 (2021); DOI: 10.3367/UFNr.2020.11.038871

References (179) ↓ Cited by (2) Similar articles (15)

  1. Yariv A, Yeh P Photonics: Optical Electronics In Modern Communications (New York: Oxford Univ. Press, 2007)
  2. Agrawal G P Fiber-Optic Communication Systems (New York: Willey, 2010)
  3. Mahapartha A, Murphy E J Optical Fiber Telecommunications IV. A. Components (Eds I P Kaminow, T Li) (San Diego, CA: Academic Press, 2002) p. 258
  4. Chen A, Murphy E Broadband Optical Modulators: Science, Technology, And Applications (Boca Raton, FL: CRC Press, 2012)
  5. Chang W S C (Ed.) RF Photonic Technology In Optical Fiber Links (Cambridge: Cambridge Univ. Press, 2002)
  6. Urick V J (Jr.), McKinney J D, Williams K J Fundamentals Of Microwave Photonics (Hoboken, NJ: Wiley, 2015); Per. na russk. yaz., Urik V Dzh, MakKinni Dzh D, Vill’yams K Dzh Osnovy Mikrovolnovoi Fotoniki (M.: Tekhnosfera, 2016)
  7. Udd E, Spillman W B (Jr., Eds) Fiber Optic Sensors: An Introduction For Engineers And Scientists (Hoboken, NJ: John Wiley and Sons, 2011) p. 87
  8. Rediker R H, Lind T A, Burke B E J. Lightwave Technol. 6 916 (1988)
  9. Liu Z et al J. Lightwave Technol. 38 1844 (2020)
  10. Huiszoon R J W et al J. Lightwave Technol. 23 1116 (2020)
  11. Lau K Y Dynamics Of Quantum Well Lasers (Eds K Y Lau, S Zory (Jr.)) (San Diego, CA: Academic Press, 1993) p. 217
  12. Okiyama T et al J. Lightwave Technol. 6 1686 (1998)
  13. Kikuchi K J. Lightwave Technol. 34 157 (2016)
  14. Sivukhin D V Obshchii Kurs Fiziki (M.: Fizmatlit, 2002)
  15. Pankove J I Optical Processes In Semiconductors (New York: Dover Publ., 1971)
  16. Miller D A B et al Phys. Rev. Lett. 53 2173 (1984)
  17. Yariv A Introduction To Optical Electronics (New York: Holt, Rinehart and Winston, 1976)
  18. Li G, Yu P J. Lightwave Technol. 21 2010 (2003)
  19. Petrov V M, Shamrai A V Interferentsiya i Difraktsiya dlya Informatsionnoi Fotoniki (SPb.: Lan’, 2019)
  20. Weis R, Gaylord T Appl. Phys. A 37 191 (1985)
  21. Toney J E Lithium Niobate Photonics (Norwood: Artech House, 2015)
  22. Bazzan M, Sada C Appl. Phys. Rev. 2 040603 (2015)
  23. Karavaev P M i dr Pis’ma ZhTF 42 (10) 33 (2016); Karavaev P M et al Tech. Phys. Lett. 42 513 (2016)
  24. Il’ichev I V i dr Kvantovaya Elektronika 39 98 (2009); Il’ichev I V et al Quantum Electron. 39 98 (2009)
  25. Betts G F, O’Donnell F J, Ray K G IEEE Photon. Technol. Lett. 6 211 (1994)
  26. Fujivara T, Sato S, Mori H Appl. Phys. Lett. 54 975 (1989)
  27. Betts G E, Ray K G, Johnson L M Integrated Photonics Research, Technical Digest (Washington, DC: OSA, 1990) p. 37
  28. Varlamov A V i dr Pis’ma ZhTF 43 (21) 87 (2017); Varlamov A V et al Tech. Phys. Lett. 43 994 (2017)
  29. Petrov A N Zh. Tekh. Fiz. 85 (5) 131 (2015); Petrov A N et al Tech. Phys. 60 761 (2015)
  30. Lee M et al Science 298 1401 (2002)
  31. Kim T D et al J. Am. Chem. Soc. 129 488 (2007)
  32. Korotky S K J. Lightwave Technol. 12 2687 (1996)
  33. Burns W K et al J. Lightwave Technol. 17 2551 (1999)
  34. Gopalakrishnan G K et al J. Lightwave Technol. 12 1807 (1994)
  35. Krahenbuhl R, Burns W K IEEE Trans. Microwave Theory Tech. 48 860 (2000)
  36. Cartlendge J C IEEE Photon. Technol. Lett. 9 1090 (1995)
  37. Macario J et al Opt. Express 20 23623 (2012)
  38. Kaminov I P et al Appl. Phys. Lett. 24 622 (1974)
  39. Izutsu M et al IEEE J. Quantum Electron. 13 287 (1977)
  40. Rangarath T R, Wang S Appl. Phys. Lett. 4 376 (1977)
  41. Sasaki H Electron. Lett. 13 693 (1977)
  42. Makami O, Noda J, Fukuma M Translat. IEICE Jpn. E-61 (1978) p. 144
  43. Minakata M et al J. Appl. Phys. 49 4677 (1978)
  44. Alferness R C et al Appl. Opt. 23 4012 (1979)
  45. Leonberger F J Opt. Lett. 5 312 (1980)
  46. Tench R E J. Lightwave Technol. 5 492 (1987)
  47. Kondo M et al Electron. Lett. 23 1167 (1987)
  48. Blumenthal P R et al Electron. Lett. 23 1359 (1987)
  49. Thylen L J. Lightwave Technol. 6 847 (1988)
  50. Sawaki I et al IEEE J. Selected Commun. 6 1267 (1988)
  51. Nishimoto H et al IEEE Photon. Technol. Lett. 2 634 (1990)
  52. Nozawa T et al Photonic Switching II. Proc. Of The Intern. Topical Meeting, 1990 (Eds K Tada, S Hinton) (Heidelberg: Springer-Verlag, 1990) p. 84
  53. Fukuma M, Noda J, Iwasaki H J. Appl. Phys. 49 3693 (1978)
  54. Fouchet S et al J. Lightwave Technol. 5 700 (1987)
  55. Nozawa T et al Appl. Opt. 30 1085 (1991)
  56. Fukuma M, Noda J Appl. Opt. 19 591 (1980)
  57. Alferness R C et al Electron. Lett. 12 490 (1982)
  58. Ramaswamy V, Alferness, Divino M Electron. Lett. 18 30 (1982)
  59. Komatsu K et al IEEE J. Lightwave Technol. 5 1239 (1987)
  60. Kataoka T et al Electron. Lett. 30 715 (1994)
  61. Hagimoto K et al Conf. Optical Fiber Communications OFC 97, Dallas, TX, 1997 p. 242
  62. Kawano K et al Electron. Lett. 25 1382 (1989)
  63. Seino et al 16th European Conf. Optical Communication, ECOC’90, Amsterdam, 1990 p. 999
  64. Macario J et al Opt. Express 20 23623 (2012)
  65. Bulmer C H, Burns W K, Hiser S C Appl. Phys. Lett. 16 1936 (1986)
  66. Skeath P et al Appl. Phys. Lett. 49 1221 (1986)
  67. Sawaki I et al Technical Digest of Conf. on Lasers and Electro-Optics, CLEO’86, Washington, DC, 1986 p. 46
  68. Yamada S, Minakata M Jpn. J. Appl. Phys. 20 733 (1981)
  69. Seino M et al Digest of Conf. Optical Fiber Communication, OFC’92 (Washington, DC: Optical Society of America, 1992) p. 325
  70. Korotky S K, Veselka J J. Lightwave Technol. 14 2687 (1987)
  71. Maack D R Reliability Of Optical Fibers And Optical Fiber Systems (Eds D K Paul, B Javidi) (Washington, DC: SPIE Optical Engineering Press, 1999) p. 197
  72. Nagata H IEEE Photon. Technol. Lett. 12 1477 (2000)
  73. Kawanishi T, Sakamoto T, Izutsu M J. Selected Topics Quantum Electron. 13 79 (2007)
  74. Sano A et al Technical Digest of 35th European Conf. on Optical Communication, ECOC’09, Vienna, 2009 p. 1
  75. Fujitsu Optical Components Co., Ltd. Optical Devices, https://www.fujitsu.com/jp/group/foc/en/products/devices/indexgig5.html
  76. Rusing M et al IEEE Nanotechnol. Mag. 18 (2019)
  77. Wang C et al Opt. Express 26 1547 (2018)
  78. Wang C et al Nature 562 101 (2018)
  79. Loncar M Technical Digest of Conf. on Lasers and Electro-Optics CLEO’2019, San Jose, CA, USA, 2019 p. 1
  80. Chelma D S et al Appl. Phys. Lett. 42 864 (1983)
  81. Weiner J S, Miller D A B, Chelma D S Appl. Phys. Lett. 50 842 (1987)
  82. Jaques M et al Opt. Express 26 22471 (2018)
  83. Joudawlkis P W et al Proc. SPIE 5435 53 (2004)
  84. Kimerling L C et al Proc. SPIE 6125 612502 (2006)
  85. Soref R A, Bennett B IEEE J. Quantum Electron. 23 123 (1987)
  86. Jalai B et al IEEE J. Selelected Top. Quantum Electron. 12 412 (2006)
  87. Reed G et al Nat. Photon. 4 518 (2010)
  88. Witzens J Proc. IEEE 106 2158 (2018)
  89. Soref R, Larenzo J IEEE J. Quantum Electron. 22 873 (1986)
  90. Nedelikovich M, Soref R, Mashanovich G Z IEEE Photon. J. 3 1171 (2011)
  91. Spector S J et al IEEE J. Selected Topics Quantum Electron. 16 165 (2010)
  92. Kaminov I P et al J. Appl. Phys. 51 4379 (1980)
  93. Fukano H et al J. Lightwave Technol. 24 2219 (2006)
  94. Yu P K L et al Intern. Topical Meeting Microwave Photonics’2005 Digest (Piscataway, NJ: IEEE, 2005) p. 21
  95. Betts G E et al IEEE Photon. Technol. Lett. 18 2065 (2006)
  96. Born M, Wolf E Principles Of Optics (Oxford: Pergamon Press, 1968); Per. na russk. yaz., Born M, Vol’f E Osnovy Optiki (M.: Nauka, 1973)
  97. Martin W E Appl. Phys. Lett. 26 562 (1975)
  98. KIssa K M et al J. Lightwave Technol. 13 1521 (1995)
  99. Kawanishi T, Sakamoto T, Izutsu M IEEE J. Selected Topics Quantum Electron. 13 79 (2007)
  100. Izutsu M, Shikama S, Sueta T IEEE J. Quantum Electron. 17 2225 (1981)
  101. GriffR A, Carter A C Technical Digest Of Optical Fiber Communication Conf.’2002 367
  102. Zhou X, Yu J J. Lightwave Technol. 27 3641 (2009)
  103. Betts G E RF Photonic Technology In Optical Fiber Links (Ed. W S C Chang) (Cambridge: Cambridge Univ. Press, 2002) p. 81
  104. Tazawa H et al J. Lightwave Technol. 24 3514 (2006)
  105. Shamrai A V i dr Kvantovaya Elektronika 35 734 (2005); Shamrai A V et al Quantum Electron. 35 734 (2005)
  106. Shamrai A V i dr Kvantovaya Elektronika 38 273 (2008); Shamrai A V et al Quantum Electron. 38 273 (2008)
  107. Lebedev V V i dr Pis’ma ZhTF 41 (22) 32 (2015); Lebedev V V Tech. Phys. Lett. 41 1083 (2015)
  108. Adams D, Aboketaf A, Prebe S Opt. Express 20 17440 (2012)
  109. Wang T et al J. Lightwave Technol. 38 1851 (2020)
  110. Pandey A, Jeyasean V, Kumar S Opt. Commun. 461 125224 (2020)
  111. Heebner J E et al IEEE J. Quantum Electron. 40 726 (2004)
  112. Bogaerts W et al Laser Photon. Rev. 6 47 (2012)
  113. Zhang L et al IEEE J. Selected Topics Quantum Electron. 16 149 (2010)
  114. Dumon P et al IEEE Photon. Technol. Lett. 16 1328 (2004)
  115. Yariv A IEEE Photon. Technol. Lett. 14 483 (2002)
  116. Sacher W D Opt. Express 16 15741 (2008)
  117. Sacher W D et al Opt. Express 21 9722 (2013)
  118. Kodanev A IEEE Photon. Technol. Lett. 26 1522 (2014)
  119. Hong J et al Sci. Rep. 7 4682 (2017)
  120. Yang R Opt. Express 23 28993 (2015)
  121. Lipson M IEEE J. Selected Topics Quantum Electron. 12 1520 (2006)
  122. Krahenbuhl R, Howerton M M J. Lightwave Technol. 19 1287 (2001)
  123. Betts G E, Johnson L M, Cox C H J. Lightwave Technol. 7 2078 (1989)
  124. Reed G Nat. Photon. 4 518 (2010)
  125. Chen L Opt. Express 21 27003 (2013)
  126. Savchenkov A et al Phys. Rev. A 76 051804 (2004)
  127. Padmaraju K, Bergman K Nanophotonics 3 269 (2014)
  128. Kokobun Y, Funato M, Takizava M IEEE Photon. Technol. Lett. 5 1297 (1993)
  129. Guha B, Kyotoku B, Lipson M Opt. Express 18 3487 (2010)
  130. Teng J et al Opt. Express 17 14627 (2009)
  131. Djordjievich S et al Opt. Express 21 13958 (2013)
  132. Dong P et al Opt. Express 18 9852 (2010)
  133. Zortman W et al IEEE Micro 33 42 (2013)
  134. Gheorma I L, Osgood R M IEEE Photon. Technol. Lett. 14 795 (2002)
  135. Petrov M P i dr Pis’ma ZhTF 30 (3) 75 (2004); Petrov M P et al. Tech. Phys. Lett. 30 120 (2004)
  136. Arora P et al Opt. Commun. 281 2067 (2008)
  137. Noriega U D et al Appl. Phys. B 106 51 (2012)
  138. Greshnov A A, Lebedev V V, Shamrai A V Zh. Tekh. Fiz. 82 (9) 39 (2012); Greshnov A A, Lebedev V V, Shamrai A V Tech. Phys. 57 1219 (2012)
  139. Alferness R C IEEE Trans. Microwave Theory Tech. 30 1121 (1982)
  140. Kogelnik H, Schmidt R V IEEE J. Quantum Electron. 12 396 (1976)
  141. Watson J E et al J. Lightwave Technol. 8 794 (1990)
  142. Donelly J P, Gopinath A A IEEE J. Quantum Electron. 23 30 (1987)
  143. Tsuzuki K et al Electron. Lett. 39 1464 (2003)
  144. Kuz’minov Yu S Niobat i Tantalat Litiya. Materialy dlya Nelineinoi Optiki (M.: Nauka, 1975)
  145. Lebedev V V i dr Pis’ma ZhTF 40 (17) 39 (2014); Lebedev V V Tech. Phys. Lett. 40 743 (2014)
  146. Noguchi K J. Opt. Fiber Commun. 4 1 (2007)
  147. Wang C et al Nature 562 101 (2018)
  148. Petrov V M i dr Fotonika (5) 414 (2020)
  149. Enami Y et al Nat. Photon. 1 180 (2007)
  150. Varlamov A V i dr Pis’ma ZhTF 43 (21) 87 (2017); Varlamov A V et al Tech. Phys. Lett. 43 994 (2017)
  151. Wong K K (Ed.) Properties Of Lithium Niobate (London: INSPEC, 2002)
  152. Wang X et al APL Photon. 4 096101 (2019)
  153. Macario J et al Opt. Express 20 23623 (2012)
  154. Gopalakrishnan G K, Burns W K, Bulmer C H Electron. Lett. 28 207 (1992)
  155. Shi Y IEEE Trans. Microwave Theory Tech. 54 810 (2006)
  156. Kondo J et al IEEE Photon. Technol. Lett. 17 2077 (2005)
  157. Fukuma M, Noda J Appl. Opt. 19 591 (1980)
  158. Alferness R C, Buhl L L, Divino M D Electron. Lett. 18 490 (1982)
  159. Ramaswamy V, Alferness R C, Divino M Electron. Lett. 18 30 (1982)
  160. Borghesani A Optical Fiber Communication Conf., Technical Digest (Washington, DC: Optical Society of America, 2003), paper ThO1
  161. Delansay P et al Electron. Lett. 32 1820 (1996)
  162. Kim H, Gnauk A H IEEE Photon. Technol. Lett. 14 298 (2002)
  163. Tronev A et al J. Phys. Conf. Ser. 951 012002 (2018)
  164. Lu P et al Appl. Phys. Rev. 6 041302 (2019)
  165. Yamaguchi V Y et al Jpn. J. Appl. Phys. 53 08MB03 (2014)
  166. Tronev A et al Proc. SPIE 10535 1053527 (2018)
  167. Koyama F, Iga K J. Lightwave Technol. 6 87 (1988)
  168. Laverdiere C, Fekecs A, Tetu M IEEE Photon. Technol. Lett. 15 446 (2003)
  169. Gnauk A H et al IEEE Photon. Technol. Lett. 3 916 (1991)
  170. Catherle J C J. Lightwave Technol. 16 372 (1998)
  171. Ackerman E Microwave Theory Tech. IEEE Trans. 47.2271-2279.10.1109/22.808970 (2000)
  172. Fereira A et al Technical Digest 11-th Intern. Conf. on Transparent Optical Networks, Azores, 2009 p. 1
  173. https://www.infinera.com/wp-content/uploads/The-Advantages-of-InP-Photonic-Integration-in-High-Performance-Coherent-Optics-0223-WP-RevA-1219.pdf
  174. Doerr C R Frontiers Phys. 3 37 (2015)
  175. Cheng Q et al Optica 5 1354 (2018)
  176. Shen Y et al J. Lightwave Technol. 37 245 (2019)
  177. Alibart O et al J. Opt. 18 104001 (2016)
  178. Lonchar M Technical Digest of 2019 Conf. on Lasers and Electro-Optics, San Jose, CA, USA, 2019 p. 1
  179. Rusing M et al IEEE Nanotechnol. Mag. 13 18 (2019)

© 1918–2023 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions