Issues

 / 

2021

 / 

July

  

Reviews of topical problems


Spin-polaron concept in the theory of normal and superconducting states of cuprates

  a,   a, b, §  a, *  c
a Kirensky Institute of Physics, Federal Research Center Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Academgorodok 50, str. 38, Krasnoyarsk, 660036, Russian Federation
b M. F. Reshetnev Siberian State University of Science and Technologies, Krasnoyarsky Rabochy Av. 31, Krasnoyarsk, 660014, Russian Federation
c Institute for High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse 14, Troitsk, Moscow, 108840, Russian Federation

The review discusses the emergence of the spin-fermion model of cuprates and the formation of the spin-polaron concept of the electronic structure of hole-doped cuprate superconductors. This concept has allowed describing the properties of cuprates in the normal phase as well as the features of superconducting pairing in the unified approach. The derivation of the spin-fermion model from the Emery model in the regime of strong electronic correlations is described, demonstrating the appearance of strong coupling between the spins of copper ions and holes on oxygen ions. Such a strong interaction against the background of the singlet state of the spin subsystem of copper ions (quantum spin liquid) leads to the formation of special Fermi quasiparticles — nonlocal spin polarons. Under doping, the spin-polaron ensemble exhibits instability with respect to superconducting d-wave pairing, whereas superconducting s-wave pairing is not implemented. At the optimal doping, the transition to the superconducting phase occurs at temperatures corresponding to experimental data. It is shown that the superconducting d-wave pairing of spin-polaron quasiparticles is not suppressed by the Coulomb repulsion of holes located on neighboring oxygen ions. It is emphasized that, when the spectral characteristics of spin-polaron quasiparticles are taken into account, the calculated temperature and doping dependences of the London penetration depth are in good agreement with experimental data.

Fulltext pdf (1000 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.08.038829
Keywords: strongly correlated electron systems, high-temperature superconductivity, spin polarons, intersite Coulomb interaction, London penetration depth
PACS: 71.10.−w, 71.10.Fd, 71.27.+a, 74.20.−z, 74.20.Mn, 74.25.N−, 74.72.−h (all)
DOI: 10.3367/UFNe.2020.08.038829
URL: https://ufn.ru/en/articles/2021/7/a/
000702491600001
2-s2.0-85116935286
2021PhyU...64..641V
Citation: Val’kov V V, Dzebisashvili D M, Korovushkin M M, Barabanov A F "Spin-polaron concept in the theory of normal and superconducting states of cuprates" Phys. Usp. 64 641–670 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 22nd, April 2020, revised: 4th, July 2020, 18th, August 2020

Оригинал: Вальков В В, Дзебисашвили Д М, Коровушкин М М, Барабанов А Ф «Спин-поляронная концепция в теории нормального и сверхпроводящего состояний купратов» УФН 191 673–704 (2021); DOI: 10.3367/UFNr.2020.08.038829

References (329) Cited by (7) Similar articles (20) ↓

  1. M.Yu. Kagan, V.A. Mitskan, M.M. Korovushkin “Anomalous superconductivity and superfluidity in repulsive fermion systemsPhys. Usp. 58 733–761 (2015)
  2. S.I. Vedeneev “Pseudogap problem in high-temperature superconductorsPhys. Usp. 64 890–922 (2021)
  3. A.S. Mishchenko “Electron — phonon coupling in underdoped high-temperature superconductorsPhys. Usp. 52 1193–1212 (2009)
  4. E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii “Generalized dynamical mean-field theory in the physics of strongly correlated systemsPhys. Usp. 55 325–355 (2012)
  5. Ya.S. Lyakhova, G.V. Astretsov, A.N. Rubtsov “Mean-field concept and post-DMFT methods in the modern theory of correlated systemsPhys. Usp. 66 775–793 (2023)
  6. M.Yu. Kagan, A.V. Turlapov “BCS—BEC crossover, collective excitations, and hydrodynamics of superfluid quantum fluids and gasesPhys. Usp. 62 215–248 (2019)
  7. Yu.A. Izyumov, N.M. Plakida, Yu.N. Skryabin “Magnetism in high-temperature superconducting compoundsSov. Phys. Usp. 32 1060–1083 (1989)
  8. Yu.A. Izyumov “Hubbard model of strong correlationsPhys. Usp. 38 385–408 (1995)
  9. Yu.A. Izyumov “Magnetism and superconductivity in strongly correlated systemsSov. Phys. Usp. 34 (11) 935–957 (1991)
  10. M.V. Sadovskii “High-temperature superconductivity in iron-based layered compoundsPhys. Usp. 51 1201–1227 (2008)
  11. A.I. Golovashkin “High-temperature superconducting ceramics (review of experimental results)Sov. Phys. Usp. 30 659–670 (1987)
  12. A.P. Protogenov “Anyon superconductivity in strongly-correlated spin systemsSov. Phys. Usp. 35 (7) 535–571 (1992)
  13. K.V. Mitsen, O.M. Ivanenko “Phase diagram of La2-xMxCuO4 as the key to understanding the nature of high-Tc superconductorsPhys. Usp. 47 493–510 (2004)
  14. A.V. Nikolaev, A.V. Tsvyashchenko “The puzzle of the γ→α and other phase transitions in ceriumPhys. Usp. 55 657–680 (2012)
  15. Yu.S. Orlov, S.V. Nikolaev et alFeatures of spin crossovers in magnetic materialsPhys. Usp. 66 647–672 (2023)
  16. A.S. Alexandrov, A.B. Krebs “Polarons in high-temperature superconductorsSov. Phys. Usp. 35 (5) 345–383 (1992)
  17. E.G. Maksimov “High-temperature superconductivity: the current statePhys. Usp. 43 965–990 (2000)
  18. A.F. Barabanov, Yu.M. Kagan et alThe Hall effect and its analogsPhys. Usp. 58 446–454 (2015)
  19. V.L. Ginzburg, D.A. Kirzhnits “High-temperature superconductivity (a review of theoretical ideas)Sov. Phys. Usp. 30 671–675 (1987)
  20. N.I. Kashirina, V.D. Lakhno “Large-radius bipolaron and the polaron-polaron interactionPhys. Usp. 53 431–453 (2010)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions