Issues

 / 

2020

 / 

February

  

Reviews of topical problems


Latest developments of models and calculation schemes for the quantitative analysis of the physical properties of polymers

 a, b,  b
a Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova st. 28, Moscow, 119991, Russian Federation
b Moscow State University of Civil Engineering, Yaroslavskoe shosse 26, Moscow, 129337, Russian Federation

The newest models and calculation schemes for the quantitative analysis of a number of physical properties of polymers are described. Among the physical properties are the glass transition temperature, the flow temperature of polymer nanocomposites, the thermal conductivity, the boiling point of polymer solutions, the water absorption and water permeability of polymers and nanocomposites, the strength, viscosity, storage and loss moduli, refractive index and dielectric constant. All calculation schemes are based on the structure of linear and cross-linked polymers; their degree of crystallinity, free volume; the influence of temperature, the composition of copolymers and homogeneous mixtures of polymers are taken into account. In the case of nanocomposites, the concentration of nanoparticles, their shape, size distribution, orientation angles, the structure of polar groups grafted to the surface of nanoparticles, and the energy of intermolecular interactions are taken into account. Spherical nanoparticles, rectangular plates and nanofibers are considered. The calculation scheme for the refractive index and the dielectric constant takes into account the effect of the plasticizing action of the remnants of the synthesis products and the solvent, the nonlinearity on the Clausis-Mossoti function, the composition of the nanoparticles, and the temperature. All calculation schemes are computerized and allow automatic calculations after the introduction into the computer of the structure of the repeating unit of the polymer, as well as the shape and dimensions of the nanofillers.

Fulltext pdf (958 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.11.038473
Keywords: glass transition temperature, flow temperature, thermal conductivity, ebullioscopy constant, water absorption, water permeability of polymers and nanocomposites, yield strength, viscosity, storage modulus and loss modulus, refractive index, dielectric constant
PACS: 82.35.Jk, 82.35.Lr, 82.35.Np, 83.80.Tc (all)
DOI: 10.3367/UFNe.2018.11.038473
URL: https://ufn.ru/en/articles/2020/2/d/
000537855900004
2-s2.0-85085100701
2020PhyU...63..162A
Citation: Askadskii A A, Matseevich T A "Latest developments of models and calculation schemes for the quantitative analysis of the physical properties of polymers" Phys. Usp. 63 162–191 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 25th, September 2018, revised: 6th, November 2018, 15th, November 2018

Оригинал: Аскадский А А, Мацеевич Т А «Новейшие разработки моделей и расчётных схем для количественного анализа физических свойств полимеров» УФН 190 179–210 (2020); DOI: 10.3367/UFNr.2018.11.038473

References (108) Cited by (4) Similar articles (20) ↓

  1. A.A. Askadskii, T.A. Matseevich “Further research on the improvement of models and computer programs for the prediction and analysis of the physical properties of polymers66 586–627 (2023)
  2. G.N. Makarov “Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography56 643–682 (2013)
  3. G.V. Kozlov “Structure and properties of particulate-filled polymer nanocomposites58 33–60 (2015)
  4. G.N. Makarov “Kinetic methods for measuring the temperature of clusters and nanoparticles in molecular beams54 351–370 (2011)
  5. A.N. Vasil’ev, V.D. Buchel’nikov et alShape memory ferromagnets46 559–588 (2003)
  6. Yu.A. Izyumov, Yu.N. Skryabin “Double exchange model and the unique properties of the manganites44 109–134 (2001)
  7. Yu.A. Izyumov, E.Z. Kurmaev “Physical properties and electronic structure of superconducting compounds with the β-tungsten structure17 356–380 (1974)
  8. B.V. Sokolenko, N.V. Shostka, O.S. Karakchieva “Optical tweezers and manipulators. Modern concepts and future prospects65 812–833 (2022)
  9. G.N. Makarov “Cluster temperature. Methods for its measurement and stabilization51 319–353 (2008)
  10. A.A. Ovchinnikov, I.I. Ukrainskii, G.V. Kventsel’ “Theory of one-dimensional mott semiconductors and the electronic structure of long molecules having conjugated bonds15 575–591 (1973)
  11. A.V. Guglielmi, A.S. Potapov “Frequency-modulated ULF waves in near-Earth space64 452–467 (2021)
  12. V.N. Rudenko, S.I. Oreshkin, K.V. Rudenko “Measuring global gravity-inertial effects with ring laser interferometers65 920–951 (2022)
  13. P.G. Frick, D.D. Sokoloff, R.A. Stepanov “Wavelets for the space-time structure analysis of physical fields65 62–89 (2022)
  14. G.N. Makarov “Experimental methods for determining the melting temperature and the heat of melting of clusters and nanoparticles53 179–198 (2010)
  15. Yu.Kh. Vekilov, M.A. Chernikov “Quasicrystals53 537–560 (2010)
  16. A.L. Ivanovskii “New high-temperature superconductors based on rare-earth and transition metal oxyarsenides and related phases: synthesis, properties, and simulations51 1229–1260 (2008)
  17. L.A. Golovan, V.Yu. Timoshenko, P.K. Kashkarov “Optical properties of porous-system-based nanocomposites50 595–612 (2007)
  18. R. Folk, Yu. Holovatch, T. Yavorskii “Critical exponents of a three-dimensional weakly diluted quenched Ising model46 169–191 (2003)
  19. G.V. Kozlov, V.U. Novikov “A cluster model for the polymer amorphous state44 681–724 (2001)
  20. A.E. Grishchenko, A.N. Cherkasov “Orientational order in polymer surface layers40 257–272 (1997)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions