Issues

 / 

2020

 / 

February

  

Reviews of topical problems


Latest developments of models and calculation schemes for the quantitative analysis of the physical properties of polymers

 a, b,  b
a Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova st. 28, Moscow, 119991, Russian Federation
b Moscow State University of Civil Engineering, Yaroslavskoe shosse 26, Moscow, 129337, Russian Federation

The newest models and calculation schemes for the quantitative analysis of a number of physical properties of polymers are described. Among the physical properties are the glass transition temperature, the flow temperature of polymer nanocomposites, the thermal conductivity, the boiling point of polymer solutions, the water absorption and water permeability of polymers and nanocomposites, the strength, viscosity, storage and loss moduli, refractive index and dielectric constant. All calculation schemes are based on the structure of linear and cross-linked polymers; their degree of crystallinity, free volume; the influence of temperature, the composition of copolymers and homogeneous mixtures of polymers are taken into account. In the case of nanocomposites, the concentration of nanoparticles, their shape, size distribution, orientation angles, the structure of polar groups grafted to the surface of nanoparticles, and the energy of intermolecular interactions are taken into account. Spherical nanoparticles, rectangular plates and nanofibers are considered. The calculation scheme for the refractive index and the dielectric constant takes into account the effect of the plasticizing action of the remnants of the synthesis products and the solvent, the nonlinearity on the Clausis-Mossoti function, the composition of the nanoparticles, and the temperature. All calculation schemes are computerized and allow automatic calculations after the introduction into the computer of the structure of the repeating unit of the polymer, as well as the shape and dimensions of the nanofillers.

Fulltext pdf (958 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.11.038473
Keywords: glass transition temperature, flow temperature, thermal conductivity, ebullioscopy constant, water absorption, water permeability of polymers and nanocomposites, yield strength, viscosity, storage modulus and loss modulus, refractive index, dielectric constant
PACS: 82.35.Jk, 82.35.Lr, 82.35.Np, 83.80.Tc (all)
DOI: 10.3367/UFNe.2018.11.038473
URL: https://ufn.ru/en/articles/2020/2/d/
000537855900004
2-s2.0-85085100701
2020PhyU...63..162A
Citation: Askadskii A A, Matseevich T A "Latest developments of models and calculation schemes for the quantitative analysis of the physical properties of polymers" Phys. Usp. 63 162–191 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 25th, September 2018, revised: 6th, November 2018, 15th, November 2018

Оригинал: Аскадский А А, Мацеевич Т А «Новейшие разработки моделей и расчётных схем для количественного анализа физических свойств полимеров» УФН 190 179–210 (2020); DOI: 10.3367/UFNr.2018.11.038473

References (108) ↓ Cited by (4) Similar articles (20)

  1. Askadskii A A Obzornyi Zhurn. Po Khimii 5 (2) 101 (2015); Askadskii A A Rev. J. Chem. 5 (2) 83 (2015)
  2. Van Krevelen D W Properties Of Polymers: Their Correlation With Chemical Structure, Their Numerical Estimation And Prediction From Additive Group Contributions (Amsterdam: Elsevier, 1990)
  3. Bicerano J Prediction Of Polymer Properties (New York: M. Dekker, 1996)
  4. Askadskii A A, Matveev Yu I Khimicheskoe Stroenie i Fizicheskie Svoistva Polimerov (M.: Khimiya, 1983)
  5. Askadskii A A, Popova M N, Kondrashchenko V I Fiziko-khimiya Polimernykh Materialov i Metody Ikh Issledovaniya (M.: ASV, 2015)
  6. Askadskii A A, Kondrashchenko V I Komp’yuternoe Materialovedenie Polimerov T. 1 Atomno-molekulyarnyi Uroven’ (M.: Nauchnyi mir, 1999)
  7. Askadskii A A Computational Materials Science Of Polymers (Cambridge: Cambridge Intern. Sci. Publ., 2003)
  8. Matseevich T A i dr Plasticheskie Massy (1 - 2) 3 (2016)
  9. Askadskii A A, Matseevich T A, Markov V A Dokl. Ross. Akad. Nauk 466 177 (2016); Askadskii A A, Matseevich T A, Markov V A Dokl. Phys. Chem. 466 12 (2016)
  10. Askadskii A A, Matseevich T A, Markov V A Vysokomolekulyarnye Soedineniya A 58 326 (2016); Askadskii A A, Matseevich T A, Markov V A Polymer Sci. A 58 506 (2016)
  11. Matseevich T A, Popova M N, Matseevich A V, Askadskii A A Aktual’nye voprosy sovremennykh matematicheskikh i estestvennykh nauk. Sbornik nauchnykh trudov po itogam III Mezhdunarodnoi nauchno-prakticheskoi konf., 10 marta 2016 g. Vyp. 3 (Ekaterinburg: ITsRON, 2016) p. 37
  12. Kozlov G V Usp. Fiz. Nauk 185 35 (2015); Kozlov G V Phys. Usp. 58 33 (2015)
  13. Askadskii A A Lektsii Po Fiziko-khimii Polimerov (M.: Fizicheskii fakul’tet MGU, 2001)
  14. Askadskii A A Lectures On The Physico-Chemistry Of Polymers (Hauppauge, NY: Nova Sci. Publ., 2003)
  15. Askadskii A A, Khokhlov A R Vvedenie v Fiziko-khimiyu Polimerov (M.: Nauchnyi mir, 2009)
  16. Askadskii A A Physical Properties Of Polomers. Prediction And Control (Amsterdam: Gordon and Breach Publ., 1996)
  17. Askadskii A A, Petunova M D, Markov V A Vysokomolekulyarnye Soedineniya A 55 1473 (2013); Askadskii A A, Petunova M D, Markov V A Polymer Sci. A 55 772 (2013)
  18. Godovskii Yu K Teplofizika Polimerov (M.: Khimiya, 1982); Godovsky Yu K Thermophysical Properties Of Polymers (Berlin: Springer-Verlag, 1992)
  19. Berman R Thermal Conduction In Solids (Oxford: Pergamon Press, 1976); Per. na russk. yaz., Berman R Teploprovodnost’ Tverdykh Tel (M.: Mir, 1979)
  20. Eiermann K Kolloid-Z. Z. Polymere 198 (1 - 2) 5 (1964)
  21. Vargaftik N B i dr Teploprovodnost’ Zhidkostei i Gazov (M.: Izd-vo standartov, 1978)
  22. Mark J E (Ed.) Physical Properties Of Polymers Handbook (New York: Springer, 2007)
  23. Mojumdar S C et al J. Therm. Anal. Calorim. 85 119 (2006)
  24. Matseevich A V, Vorozheikina O M Stroitel’stvo 8 (1) 75 (2018)
  25. Askadskii A A i dr Vysokomolekulyarnye Soedineniya A 57 582 (2015); Askadskii A A et al Polymer Sci. A 57 924 (2015)
  26. Askadskii A A i dr Dokd. RAN 462 558 (2015); Askadskii A A et al Dokl. Phys. Chem. 462 (2) 124 (2015)
  27. Matseevich T A Diss. ... dokt. fiz.-mat. nauk (M.: IKhF RAN, 2017)
  28. Greenlee L F et al Water Res. 43 2317 (2009)
  29. Service R F Science 313 1088 (2006)
  30. Burbano A, Adham S S, Pearce W R J. Am. Water Works Association 99 116 (2007)
  31. Paul M et al Polymer 49 2243 (2008)
  32. McGrath J E, Park H B, Freeman B D "Chlorine resistant desalination membranes based on directly sulfonated poly(aryleneether sulfone) copolymers" US Patent 8,028,842 (2011)
  33. Park H B et al Angewandte Chem. Int. Ed. 47 6019 (2008)
  34. Xie W et al Water Sci. Technol. 61 619 (2010)
  35. Knoell T Ultrapure Water (23) 24 (2006)
  36. Geise G M et al J. Polymer Sci. B 48 1685 (2010)
  37. Geise G M et al J. Membr. Sci. 369 130 (2011)
  38. Greener J et al J. Appl. Polymer Sci. 106 3534 (2007)
  39. Genov Iv et al J. Univ. Chem. Technol. Metallurgy 45 (2) 213 (2010)
  40. Islam M A, Buschatz H Indian J. Chem. Technol. 12 88 (2005)
  41. Islam M A, Buschatz H, Paul D J. Membrane Sci. 204 379 (2002)
  42. Islam M A, Buschatz H Chem. Eng. Sci. 57 2089 (2002)
  43. Crank J, Park G S (Eds) Diffusion In Polymers (London: Academic Press, 1968)
  44. Ho W S W, Sirkar K K (Eds) Membrane Handbook (New York: Van Nostrand Reinhold, 1992)
  45. Paul D R, Yampol’skii Yu P Polymeric Gas Separation Membranes (Boca Raton, FL: CRC Press, 1994)
  46. Reitlinger S A Pronitsaemost’ Polimernykh Materialov (M.: Khimiya, 1974)
  47. Iordanskii A L, Startsev O V, Zaikov G E (Eds) Water Transport In Synthetic Polymers (New York: Nova Sci. Publ., 2003)
  48. Zaikov G E, Iordanskii A L, Markin V S Diffuziya Elektrolitov v Polimerakh (M.: Khimiya, 1984); Per. na angl. yaz., Zaikov G E, Iordanskii A L, Markin V S Diffusion Of Electrolytes In Polymers (Utrecht: VSP, 1988)
  49. Iordanskii A L, Rudakova T E, Zaikov G E Interaction Of Polymers With Bioactive And Corrosive Media (Utrecht: VSP, 1994)
  50. Hwang S T, Choi S K, Kammermeyer K Separat. Sci. 9 461 (1974)
  51. Mulder M Basic Principles Of Membrane Technology (Dordrecht: Kluwer Acad., 1996)
  52. Porter M C (Ed.) Handbook Of Industrial Membrane Technology (Park Ridge, NJ: Noyes Publ., 1990)
  53. Vieth W R Diffusion In And Through Polymers. Principles And Applications (Munich: Hanser Publ., 1991)
  54. Jonquiàres A, Clément R, Lochon P Prog. Polymer Sci. 27 1803 (2002)
  55. Baker R W Ind. Eng. Chem. Res. 41 1393 (2002)
  56. Huang J et al J. Membr. Sci. 215 129 (2003)
  57. Gallego-Lizon T, Ho Y S, dos Santos L F Desalination 149 3 (2002)
  58. Roberts A P et al J. Membr. Sci. 208 75 (2002)
  59. Cranford R J et al J. Membr. Sci. 155 231 (1999)
  60. Lokhandwala K A, Nadakatti S M, Stern S A J. Polymer Sci. B 33 965 (1995)
  61. Overmann D C (III) US Patent 5,034,025 (1991)
  62. Rahimzadeh R A US Patent 5,681,368 (1997)
  63. Sacher E, Susko J R J. Appl. Polymer Sci. 23 2355 (1979)
  64. Huang J et al J. Appl. Polymer Sci. 85 139 (2002)
  65. Okamoto K et al J. Polymer Sci. B 30 1223 (1992)
  66. Watari T et al , Advanced Materials For Membrane Separations (ACS Symposium Series) Vol. 876 (Eds I Pinnau, B D Freeman) (Washington, DC: American Chemical Society, 2004) p. 253
  67. Rivin D et al Polymer 42 623 (2001)
  68. Tikhomirov B P et al Macromol. Chem. 118 177 (1968)
  69. Salame M 164th ACS National Meeting, New York City August 27 - September 1, 1972 (Washington, DC: American Chemical Society, 1972) p. 113
  70. Salame M Proc. of the 1986 Polymer, Laminations and Coating Conf. (Atlanta, GA: TAPPI Press, 1986) p. 363
  71. Myers A W et al Mod. Plastics 37 (10) 139 (1960)
  72. Mohr J M, Paul D R J. Appl. Polymer Sci. 42 1711 (1991)
  73. Stannett V T, Ranade G R, Koros W J J. Membr. Sci. 10 219 (1982)
  74. Platé N A et al J. Membr. Sci. 60 13 (1991)
  75. Stannett V, Williams J L J. Polymer Sci. C 10 45 (1965)
  76. Bondi A J. Phys. Chem. 58 929 (1954)
  77. Askadskii A A i dr Vysokomolekulyarnye Soedineniya A 58 (2) 152 (2016); Askadskii A A et al Polymer Sci. A 58 220 (2016)
  78. Askadskii A et al Adv. Mater. Res. 133-134 939 (2014)
  79. Duan Z, Thomas N L, Huang W J. Membr. Sci. 445 112 (2013)
  80. Nielsen L E J. Macromol. Sci. A 1 929 (1967)
  81. Choudalakis G, Gotsis A D Eur. Polymer J. 45 967 (2009)
  82. Ly Y P, Cheng Y-L J. Membr. Sci. 133 207 (1997)
  83. Gusev A A, Lusti H R Adv. Mater. 13 1641 (2001)
  84. Fredrickson G H, Bicerano J J. Chem. Phys. 110 2181 (1999)
  85. Cussler E L et al J. Membr. Sci. 38 161 (1988)
  86. Moggridge G D et al Prog. Organic Coatings 46 231 (2003)
  87. Lape N K, Nuxoll E E, Cussler E L J. Membr. Sci. 236 29 (2004)
  88. Yang C, Smyrl W H, Cussler E L J. Membr. Sci. 231 1 (2004)
  89. LeBaron P C, Wang Z, Pinnavaia T J Appl. Clay Sci. 15 11 (1999)
  90. Powell C E, Beall G W Current Opin. Solid State Mater. Sci. 10 (2) 73 (2006)
  91. Bharadwaj R K Macromolecules 34 9189 (2001)
  92. Barrer R M, Petropoulos J H Br. J. Appl. Phys. 12 691 (1961)
  93. Cussler E L et al J. Membr. Sci. 38 161 (1988)
  94. Lape N K, Nuxoll E E, Cussler E L J. Membr. Sci. 236 29 (2004)
  95. Sorrentino A, Tortora M, Vittoria V J. Polymer Sci. B 44 265 (2006)
  96. Jacquelot E et al J. Polymer Sci. B 44 431 (2006)
  97. Messersmith P B, Giannelis E P J. Polymer Sci. A 33 1047 (1995)
  98. Askadskii A A, Matseevich T A, Kondrashchenko V I Stroitel’nye Materialy (10) 64 (2018)
  99. Askadskii A A, Matseevich T A, Kondrashchenko V I Plasticheskie Massy (11 -- 12) 7 (2018)
  100. Askadskii A A, Matveev Yu I, Matseevich T A Vysokomolekulyarnye Soedineniya A 60 461 (2018); Askadskii A A, Matveev Yu I, Matseevich T A Polymer Sci. A 60 742 (2018)
  101. Askadskii A A, Matveev Yu I, Matseevich T A Dokl. Ross. Akad. Nauk 482 167 (2018); Askadskii A A, Matveev Yu I, Matseevich T A Dokl. Phys. Chem. 482 125 (2018)
  102. Matveev Yu I, Grinberg V Ya, Tolstoguzov V B Food Hydrocolloids 14 425 (2000)
  103. Jepsen D W J. Chem. Phys. 44 774 (1966)
  104. Mikerin S L i dr Kvantovaya Elektronika 46 609 (2016); Mikerin S L et al Quantum Electron. 46 609 (2016)
  105. Matveev Yu I, Askadskii A A Vysokomolek. Soed. A 45 1707 (2003)
  106. Burunkova Yu E Diss. ... kand. fiz.-mat. nauk (SPb.: Sankt-Peterburgskii gos. un-tet informatsionnykh tekhnologii, mekhaniki i optiki, 2008)
  107. Smirnova T V, Denisyuk I Yu, Burunkova Yu E Opticheskii 73 (3) 3 (2006); Smirnova T V, Burunkova Yu É, Denisyuk I Yu J. Opt. Technol. 73 149 (2006)
  108. Burunkova Yu E i dr Opticheskii Zhurn. 75 (10) 54 (2008); Burunkova Yu É et al J. Opt. Technol. 75 653 (2008)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions