Issues

 / 

2019

 / 

February

  

Reviews of topical problems


Relaxation aspects of the liquid—glass transition

 a,  b, c
a Buryat State University, Smolina st. 24a, Ulan-Ude, 670000, Russian Federation
b Lomonosov Moscow State University, Vorobevy Gory, Moscow, 119991, Russian Federation
c Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom

Relaxation theories of the glass transition and viscous flow of glass-forming melts are presented. The main attention is devoted to modern representations of the glass transition equation qτg = δTg determining the appearance of a glassy state during cooling. Here, q=d T/dt is the temperature change rate during melt cooling and τg is the relaxation time at the glass transition temperature Tg. Various methods for calculating the characteristic temperature band δ Tg during the liquid—glass transition are considered. The generalized equation for the dependence of Tg on the melt cooling rate is derived. Based on the model of delocalized atoms, the modified kinetic glass transition criterion is discussed. The generalized viscosity equation for glass-forming liquids is derived.

Fulltext pdf (823 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.04.038319
Keywords: glass transition, amorphous polymers, inorganic glasses, metal amorphous melts, glass transition equation, viscosity, glass transition criterion, relaxation theories
PACS: 61.43.Gt, 64.70.Q−, 81.05.kf (all)
DOI: 10.3367/UFNe.2018.04.038319
URL: https://ufn.ru/en/articles/2019/2/a/
000466030200001
2-s2.0-85067549795
2019PhyU...62..111S
Citation: Sanditov D S, Ojovan M I "Relaxation aspects of the liquid—glass transition" Phys. Usp. 62 111–130 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 17th, January 2018, revised: 27th, March 2018, 11th, April 2018

Оригинал: Сандитов Д С, Ожован М И «Релаксационные аспекты перехода жидкость—стекло» УФН 189 113–133 (2019); DOI: 10.3367/UFNr.2018.04.038319

References (124) Cited by (31) Similar articles (20) ↓

  1. T.V. Tropin, Ju.W.P. Schmelzer, V.L. Aksenov “Modern aspects of the kinetic theory of glass transition59 42–66 (2016)
  2. D.S. Sanditov “Nature of Poisson's ratio of amorphous polymers and glasses and its relation to structure-sensitive properties63 327–341 (2020)
  3. V.V. Brazhkin, A.G. Lyapin et alWhere is the supercritical fluid on the phase diagram?55 1061–1079 (2012)
  4. I.V. Zolotukhin, Yu.E. Kalinin “Amorphous metallic alloys33 (9) 720–738 (1990)
  5. A.N. Vasil’ev, Yu.P. Gaidukov “Electromagnetic excitation of sound in metals26 952–973 (1983)
  6. R.S. Berry, B.M. Smirnov “Phase transitions and adjacent phenomena in simple atomic systems48 345–388 (2005)
  7. N.P. Kobelev, V.A. Khonik “A novel view of the nature of formation of metallic glasses, their structural relaxation, and crystallization66 673–690 (2023)
  8. G.N. Makarov “Experimental methods for determining the melting temperature and the heat of melting of clusters and nanoparticles53 179–198 (2010)
  9. V.S. Dotsenko “Physics of the spin-glass state36 (6) 455–485 (1993)
  10. G.E. Abrosimova, D.V. Matveev, A.S. Aronin “Nanocrystal formation in homogeneous and heterogeneous amorphous phases65 227–244 (2022)
  11. A.A. Askadskii, T.A. Matseevich “Further research on the improvement of models and computer programs for the prediction and analysis of the physical properties of polymers66 586–627 (2023)
  12. E.N. Zubarev “Reactive diffusion in multilayer metal/silicon nanostructures54 473–498 (2011)
  13. G.A. Martynov “The problem of phase transitions in statistical mechanics42 517–543 (1999)
  14. A.N. Volobuev “Fluid flow in tubes with elastic walls38 169–178 (1995)
  15. V.N. Mineev, A.I. Funtikov “Viscosity measurements on metal melts at high pressure and viscosity calculations for the earth’s core47 671–686 (2004)
  16. R.S. Berry, B.M. Smirnov “Modeling of configurational transitions in atomic systems56 973–998 (2013)
  17. L.I. Men’shikov “New directions in the theory of electron cooling51 645–680 (2008)
  18. S.V. Zaitsev-Zotov “Finite-size effects in quasi-one-dimensional conductors with a charge-density wave47 533–554 (2004)
  19. A.I. Olemskoi “Supersymmetric field theory of a nonequilibrium stochastic system as applied to disordered heteropolymers44 479–513 (2001)
  20. I.M. Suslov “Development of a (4-ε)-dimensional theory for the density of states of a disordered system near the Anderson transition41 441–467 (1998)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions