Issues

 / 

2019

 / 

February

  

Reviews of topical problems


Relaxation aspects of the liquid—glass transition

 a,  b, c
a Buryat State University, Smolina st. 24a, Ulan-Ude, 670000, Russian Federation
b Lomonosov Moscow State University, Vorobevy Gory, Moscow, 119991, Russian Federation
c Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom

Relaxation theories of the glass transition and viscous flow of glass-forming melts are presented. The main attention is devoted to modern representations of the glass transition equation qτg = δTg determining the appearance of a glassy state during cooling. Here, q=d T/dt is the temperature change rate during melt cooling and τg is the relaxation time at the glass transition temperature Tg. Various methods for calculating the characteristic temperature band δ Tg during the liquid—glass transition are considered. The generalized equation for the dependence of Tg on the melt cooling rate is derived. Based on the model of delocalized atoms, the modified kinetic glass transition criterion is discussed. The generalized viscosity equation for glass-forming liquids is derived.

Fulltext pdf (823 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.04.038319
Keywords: glass transition, amorphous polymers, inorganic glasses, metal amorphous melts, glass transition equation, viscosity, glass transition criterion, relaxation theories
PACS: 61.43.Gt, 64.70.Q−, 81.05.kf (all)
DOI: 10.3367/UFNe.2018.04.038319
URL: https://ufn.ru/en/articles/2019/2/a/
000466030200001
2-s2.0-85067549795
2019PhyU...62..111S
Citation: Sanditov D S, Ojovan M I "Relaxation aspects of the liquid—glass transition" Phys. Usp. 62 111–130 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 17th, January 2018, revised: 27th, March 2018, 11th, April 2018

Оригинал: Сандитов Д С, Ожован М И «Релаксационные аспекты перехода жидкость—стекло» УФН 189 113–133 (2019); DOI: 10.3367/UFNr.2018.04.038319

References (124) ↓ Cited by (35) Similar articles (20)

  1. Tropin T V, Shmel’tser Yu V P, Aksenov V L Usp. Fiz. Nauk 186 47 (2016); Tropin T V, Schmelzer J W P, Aksenov V L Phys. Usp. 59 42 (2016)
  2. Schmelzer J W P et al Glasses And The Glass Transition (Weinheim: Wiley-VCH, 2011)
  3. Rostiashvili V G, Irzhak V I, Rozenberg B A Steklovanie Polimerov (L.: Khimiya, 1987)
  4. Mazurin O V Steklovanie (L.: Nauka, 1986)
  5. Sanditov D S, Bartenev G M Fizicheskie Svoistva Neuporyadochennykh Struktur. Molekulyarno-kineticheskie i Termodinamicheskie Protsessy v Neorganicheskikh Steklakh i Polimerakh (Novosibirsk: Nauka, 1982)
  6. Vol’kenshtein M V, Ptitsyn O B Zh. Tekh. Fiz. 26 2204 (1956)
  7. Vol’kenshtein M V, Ptitsyn O B Dokl. Akad. Nauk SSSR 103 795 (1955)
  8. Gibbs J H, DiMarzio E A J. Chem. Phys. 28 373 (1958)
  9. Adam G, Gibbs J H J. Chem. Phys. 43 139 (1965)
  10. Angel C A J. Am. Ceram. Soc. 51 117 (1968)
  11. Ojovan M I Entropy 10 334 (2008)
  12. Ojovan M I Int. J. Appl. Glass Sci. 5 22 (2014)
  13. Isayev A I (Ed.) Encyclopedia Of Polymer Blends Vol. 3 Structure (Weinheim: Wiley-VCH, 2016)
  14. Klinger M I Glassy Disordered Systems. Glass Formation And Universal Anomalous Low-Energy Properties (New Jersey: World Scientific, 2013)
  15. Angell C A, Ansari Y, Zhao Z Faraday Discuss. 154 9 (2012)
  16. Angell C A MRS Bull. 33 544 (2008)
  17. IUPAC. Compendium of Chemical Terminology. 66, 583 (Cambridge: Royal Society of Chemistry, 1997)
  18. Tournier R F Chem. Phys. Lett. 641 9 (2015)
  19. Tournier R F Physica B 454 253 (2014)
  20. Tournier R F Intermetallics 30 104 (2012)
  21. Tournier R F Materials 4 869 (2011)
  22. Wool R P J. Polym. Sci. B 46 2765 (2008)
  23. Tournier R F Physica B 392 79 (2007)
  24. Ozhovan M I Zh. Eksp. Teor. Fiz. 130 944 (2006); Ozhovan M I JETP 103 819 (2006)
  25. Ozhovan M I Pis’ma ZhETF 79 769 (2004); Ojovan M I JETP Lett. 79 632 (2004)
  26. Angell C A, Rao K J J. Chem. Phys. 57 470 (1972)
  27. Stanzione J F (III), Strawhecker K E, Wool R P J. Non-Cryst. Solids 357 311 (2011)
  28. Oreshkin A I et al Acta Mater. 61 5216 (2013)
  29. Louzguine-Luzgin D V et al J. Mater. Sci. 50 1783 (2014)
  30. Louzguine-Luzgin D V et al J. Non-Cryst. Solids 419 12 (2015)
  31. Albert S et al Science 352 1308 (2016)
  32. Continentino M A Physica B 505 A1 (2017)
  33. Ma D, Stoica A D, Wang X-L Nature Mater. 8 30 (2009)
  34. Ojovan M I J. Non-Cryst. Solids 434 71 (2016)
  35. Nemilov S V Fizika Khimiya Stekla 39 857 (2013); Nemilov S V Glass Phys. Chem. 39 609 (2013)
  36. Sanditov D S Zh. Eksp. Teor. Fiz. 150 501 (2016); Sanditov D S JETP 123 429 (2016)
  37. Bartenev G M Dokl. Akad. Nauk SSSR 76 227 (1951)
  38. Bartenev G M Stroenie i Mekhanicheskie Svoistva Neorganicheskikh Stekol (M.: Stroiizdat, 1966)
  39. Bartenev G M, Barteneva A G Relaksatsionnye Svoistva Polimerov (M.: Khimiya, 1992)
  40. Bartenev G M, Sanditov D S Relaksatsionnye Protsessy v Stekloobraznykh Sistemakh (Novosibirsk: Nauka, 1986)
  41. Mandel’shtam L I, Leontovich M A Zh. Eksp. Teor. Fiz. 7 438 (1937)
  42. Mazurin O V J. Non-Cryst. Solids 25 129 (1977)
  43. Ritland H N J. Am. Ceram. Soc. 37 370 (1954)
  44. Bartenev G M, Gorbatkina Yu A Vysokomolek. Soed. 29 769 (1959)
  45. Bartenev G M, Luk’yanov I A Zhurn. Fiz. Khimii 29 1486 (1955)
  46. Moynihan C T et al J. Am. Ceram. Soc. 59 12 (1976)
  47. Sanditov D S, Mashanov A A, Darmaev M V Fiz. Tverd. Tela 59 338 (2017); Sanditov D S, Mashanov A A, Darmaev M V Phys. Solid State 59 348 (2017)
  48. Kotova L N, Norman G E, Pisarev V V J. Non-Cryst. Solids 429 98 (2015)
  49. SciGlass — Glass Property Information System (accessed on 27.01.2019), http://www.akosgmbh.de/sciglass/sciglass.htm
  50. de Donder Th, Van Rysselberghe P Thermodynamic Theory Of Affinity (Stanford, Calif.: Stanford Univ. Press, 1936)
  51. Prigogine I, Defay R Treatise On Thermodynamics, Based On The Methods Of Gibbs And De Donder (London: Longmans, 1954)
  52. Bragg W L, Williams E J Proc. R. Soc. Lond. A 145 699 (1934)
  53. Gotlib Yu Ya, Ptitsyn O B Fiz. Tverd. Tela 3 33 (1961)
  54. Tool A Q J. Am. Ceram. Soc. 29 240 (1946)
  55. Cohen M H, Turnbull D J. Chem. Phys. 31 1164 (1959)
  56. Nemilov S V Thermodynamic And Kinetic Aspects Of The Vitreous State (Boca Raton: CRC Press, 1995)
  57. Williams M L, Landel R F, Ferry J D J. Am. Chem. Soc. 77 3701 (1955)
  58. Ferry J D Viscoelastic Properties Of Polymers (New York: Wiley, 1970)
  59. Bestul B A Glastechn. Ber. K 32 59 (1959)
  60. Sanditov D S, Dorzhiev D B, Baldanov Zh P Zhurn. Fiz. Khimii 47 2990 (1973)
  61. Durov V A, Shakhparonov M I Zhurn. Fiz. Khimii 53 2456 (1979)
  62. Stolyar S V, Besedina S A Fizika Khimiya Stekla 18 (3) 88 (1992)
  63. Simon F Z. Anorg. Allg. Chem. 203 219 (1931)
  64. Razumovskaya I V, Bartenev G M Stekloobraznoe Sostoyanie. Trudy V Vsesoyuz. Soveshch. (L.: Nauka, 1971)
  65. Angell C A J. Phys. Chem. Solids 49 836 (1988)
  66. Sanditov D S i dr Fizika Khimiya Stekla 34 512 (2008); Sanditov D S et al Glass Phys. Chem. 34 389 (2008)
  67. Sanditov D S i dr Zh. Eksp. Teor. Fiz. 142 123 (2013); Sanditov D S JETP 115 112 (2012)
  68. Sanditov D S, Sangadiev S Sh, Sanditov B D Fizika Khimiya Stekla 39 553 (2013); Sanditov D S, Sangadiev S Sh, Sanditov B D Glass Phys. Chem. 39 382 (2013)
  69. Sanditov D S, Darmaev M V, Sanditov B D Fiz. Tverd. Tela 57 1629 (2015); Sanditov D S, Darmaev M V, Sanditov B D Phys. Solid State 57 1666 (2015)
  70. Sanditov D S, Darmaev M V, Sanditov B D Zh. Tekh. Fiz. 87 (1) 44 (2017); Sanditov D S, Darmaev M V, Sanditov B D Tech. Phys. 62 53 (2017)
  71. Sudzuki K, Fudzimori Kh, Khasimoto K Amorfnye Metally (M.: Metallurgiya, 1987)
  72. Schmelzer J W P J. Chem. Phys. 136 074512 (2012)
  73. Frenkel’ Ya I Vvedenie v Teoriyu Metallov (L. - M.: OGIZ, 1948)
  74. Bredbury D, Mark M, Kleinschmidt R V Trans. Am. Soc. Mech. Eng. 73 667 (1951)
  75. Shishkin N I Zh. Tekh. Fiz. 26 1461 (1956)
  76. Waterton S C J. Soc. Glass Technol. 16 244 (1932)
  77. Sanditov D S, Munkueva S B Fizika Khimiya Stekla 42 191 (2016); Sanditov D S, Munkueva S B Glass Phys. Chem. 42 135 (2016)
  78. Sanditov D S, Mashanov A A, Darmaev M V Fiz. Tverd. Tela 59 338 (2017); Sanditov D S, Mashanov A A, Darmaev M V Phys. Solid State 59 348 (2017)
  79. Mauro J C et al Proc. Natl. Acad. Sci. USA 106 19780 (2009)
  80. Vogel H Z. Phys. 22 648 (1921)
  81. Fulcher G S J. Am. Ceram. Soc. 8 789 (1925)
  82. Tammann G Der Glaszustand; Per. na russk. yaz., Tamman G Stekloobraznoe Sostoyanie (L.-M.: ONTI, 1935)
  83. Avramov I, Milchev A J. Non-Cryst. Solids 104 253 (1988)
  84. Pospelov B A Zhurn. Fiz. Khimii 29 70 (1955)
  85. Meerlender G Rheol. Acta 6 359 (1967)
  86. Jenckel E Z. Phys. Chem. 184 309 (1939)
  87. Sanditov D S Zh. Eksp. Teor. Fiz. 137 767 (2010); Sanditov D S JETP 110 675 (2010)
  88. Sanditov D S Dokl. Ross. Akad. Nauk 451 650 (2013); Sanditov D S Dokl. Phys. Chem. 451 187 (2013)
  89. Sanditov D S J. Non-Cryst. Solids 400 12 (2014)
  90. Ojovan M I, Lee W E J. Appl. Phys. 95 3803 (2004)
  91. Ojovan M I, Lee W E Phys. Chem. Glass. 46 7 (2005)
  92. Ojovan M I, Lee W E J. Phys. Condens. Matter 18 11507 (2006)
  93. Ojovan M I, Travis K P, Hand R J J. Phys. Condens. Matter 19 415107 (2007)
  94. Ojovan M I, Lee W E J. Non-Cryst. Solids 356 2534 (2010)
  95. Ojovan M I Phys. Chem. Glass. 53 143 (2012)
  96. Ojovan M I J. Non-Cryst. Solids 382 79 (2013)
  97. Volf M B Mathematical Approach To Glass (Amsterdam: Elsevier, 1982)
  98. Frenkel’ Ya I Soveshchanie Po Vyazkosti Zhidkostei i Kolloidnykh Rastvorov Vol. 2 (Pod obshch. red. E A Chudakova) (M.-L.: Izd-vo AN SSSR, 1944) p. 24
  99. Macedo P B, Litovitz T A J. Chem. Phys. 42 245 (1965)
  100. Myuller R L Stekloobraznoe Sostoyanie T. 2 Trudy Tret’ego Vsesoyuz. Soveshchaniya, Leningrad, 16 - 20 Noyabrya 1959 (M.-L.: Izd-vo AN SSSR, 1959)
  101. Sanditov D S, Badmaev S S Fizika Khimiya Stekla 41 621 (2015); Sanditov D S, Badmaev S S Glass Phys. Chem. 41 460 (2015)
  102. Frenkel’ Ya I Kineticheskaya Teoriya Zhidkostei (M.-L.: Nauka, 1975); Per. na angl. yaz., Frenkel J Kinetic Theory Of Liquid (Oxford: The Clarendon Press, 1946)
  103. Whittaker E T, Robinson G The Calculus Of Observations (London: Blackie and Son, 1928); Per. na russk. yaz., Uitteker E, Robinson G Matematicheskaya Obrabotka Rezul’tatov Nablyudenii (L.-M.: GTTI, 1935)
  104. Sanditov D S, Mashanov A A Fizika Khimiya Stekla 36 55 (2010); Sanditov D S, Mashanov A A Glass Phys. Chem. 36 41 (2010)
  105. Douglas R W Nature 158 415 (1946)
  106. Smyth H T, Finlayson J R, Remde H F Trav. IV Congress Intern. du verre Paris, 1956
  107. Myuller R L Zhurn. Prikl. Khimii 28 1077 (1955)
  108. Filipovich V N Fizika Khimiya Stekla 1 256 (1975)
  109. Sanditov D S Fizika Khimiya Stekla 2 515 (1976)
  110. Nemilov S V Fizika Khimiya Stekla 4 662 (1978)
  111. Sanditov D S Delokalizatsiya Atomov i Vyazkoe Techenie Stekloobrazuyushchikh Rasplavov (Saarbrücken: Lambert Acad. Publ., 2016)
  112. Sanditov D S, Darmaev M V, Mashanov A A Fizika Khimiya Stekla 42 609 (2016); Sanditov D S, Darmaev M V, Mashanov A A Glass Phys. Chem. 42 445 (2016)
  113. Brunacci A et al Macromolecules 29 7976 (1996)
  114. Góo;mez Ribelles J L et al Polymer 38 963 (1997)
  115. Mano J F et al Polymer 46 8258 (2005)
  116. Koh Y P, Grassia L, Simon S L Thermochim. Acta 603 135 (2015)
  117. Boucher V M et al Macromolecules 44 8333 (2011)
  118. Leutheusser E Phys. Rev. A 29 2765 (1984)
  119. Bengtzelius U, Gotze W, Sjolander A J. Phys. C 17 5915 (2000)
  120. Götze W Liquids, Freezing And The Glass Transaction (Eds J P Hansen, D Levesque, J Zinn-Justin) (Amsterdam: North-Holland, 1990); Per. na russk. yaz., Gettse V Fazovye Perekhody Zhidkost’-steklo (M.: Nauka, 1992)
  121. Ediger M D, Angell C A, Nagel S R J. Phys. Chem. 100 13200 (1996)
  122. Kirkpatrick T R, Thirumalai D, Wolynes P G Phys. Rev. A 40 1045 (1989)
  123. Lubchenko V, Wolynes P G Annu. Rev. Phys. Chem. 58 235 (2007)
  124. Wisitsorasak A, Wolynes P G J. Phys. Chem. B 118 7835 (2014)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions