Issues

 / 

2019

 / 

February

  

Reviews of topical problems


Relaxation aspects of the liquid—glass transition

 a,  b, c
a Buryat State University, Smolina st. 24a, Ulan-Ude, 670000, Russian Federation
b Lomonosov Moscow State University, Vorobevy Gory, Moscow, 119991, Russian Federation
c Imperial College London, Prince Consort Road, London, SW7 2AZ, United Kingdom

Relaxation theories of the glass transition and viscous flow of glass-forming melts are presented. The main attention is devoted to modern representations of the glass transition equation qτg = δTg determining the appearance of a glassy state during cooling. Here, q=d T/dt is the temperature change rate during melt cooling and τg is the relaxation time at the glass transition temperature Tg. Various methods for calculating the characteristic temperature band δ Tg during the liquid—glass transition are considered. The generalized equation for the dependence of Tg on the melt cooling rate is derived. Based on the model of delocalized atoms, the modified kinetic glass transition criterion is discussed. The generalized viscosity equation for glass-forming liquids is derived.

Fulltext pdf (823 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.04.038319
Keywords: glass transition, amorphous polymers, inorganic glasses, metal amorphous melts, glass transition equation, viscosity, glass transition criterion, relaxation theories
PACS: 61.43.Gt, 64.70.Q−, 81.05.kf (all)
DOI: 10.3367/UFNe.2018.04.038319
URL: https://ufn.ru/en/articles/2019/2/a/
000466030200001
2-s2.0-85067549795
2019PhyU...62..111S
Citation: Sanditov D S, Ojovan M I "Relaxation aspects of the liquid—glass transition" Phys. Usp. 62 111–130 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 17th, January 2018, revised: 27th, March 2018, 11th, April 2018

Îðèãèíàë: Ñàíäèòîâ Ä Ñ, Îæîâàí Ì È «Ðåëàêñàöèîííûå àñïåêòû ïåðåõîäà æèäêîñòü—ñòåêëî» ÓÔÍ 189 113–133 (2019); DOI: 10.3367/UFNr.2018.04.038319

References (124) Cited by (41) ↓ Similar articles (20)

  1. Mashanov A A, Ojovan M I, Darmaev M V Journal Of Non-Crystalline Solids 666 123684 (2025)
  2. (IV INTERNATIONAL SCIENTIFIC AND PRACTICAL SYMPOSIUM “MATERIALS SCIENCE AND TECHNOLOGY”: MST-IV-2024) Vol. IV INTERNATIONAL SCIENTIFIC AND PRACTICAL SYMPOSIUM “MATERIALS SCIENCE AND TECHNOLOGY”: MST-IV-2024Determining the glass transition zone in the glass and metal composite componentOlgaLyubimovaAlekseyStreltsovKonstantinShelkovnikovMaximBarbotkoAlexanderProtsenko3347 (2025) p. 020084
  3. Ojovan M I, Louzguine-Luzgin D V Materials 18 (16) 3886 (2025)
  4. Makarov A S, Afonin G V et al Journal Of Non-Crystalline Solids 666 123667 (2025)
  5. Wang W-H, Zhao R et al Mater. Futures 4 (3) 033001 (2025)
  6. Ojovan M I, Lu A Kh A, Louzguine-Luzgin D V Metals 15 (8) 869 (2025)
  7. Kondrin M V, Lebed Y B et al Physica A: Statistical Mechanics And Its Applications 649 129961 (2024)
  8. Gabriels K S, Dubovitskaya T V et al Thin Solid Films 804 140504 (2024)
  9. Mashanov A A, Ojovan M I et al Applied Sciences 14 (10) 4319 (2024)
  10. Vasin M, Ankudinov V Math Methods In App Sciences 47 (8) 6798 (2024)
  11. Shankar A, Bhatt N K Journal of Applied Physics 136 (3) (2024)
  12. Barbot’ko M A, Lyubimova O N, Strel’tsov A A Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I.Ya. Yakovleva. Seriya: Mekhanika predel’nogo sostoyaniya (4(58)) 52 (2023)
  13. Konchakov R A, Makarov A S et al Journal Of Non-Crystalline Solids 619 122555 (2023)
  14. Darmaev M V, Ojovan M I et al Applied Sciences 13 (4) 2742 (2023)
  15. Gridnev S A, Kalinin Y E Tech. Phys. 68 (S3) S532 (2023)
  16. Prado M O, Benedetto F E Materials 16 (4) 1596 (2023)
  17. Kalinin Yu E, Kudrin A M et al Polym. Sci. Ser. A 64 (1) 1 (2022)
  18. Gridnev S A, Kalinin Yu E et al Journal Of Alloys And Compounds 918 165610 (2022)
  19. Louzguine-Luzgin D V Materials 15 (20) 7285 (2022)
  20. Lapuk S E, Ponomareva M A et al Macromolecules 55 (11) 4516 (2022)
  21. Van Yen N, Plan Emmanuel L C VI M et al Eur. Phys. J. B 95 (4) (2022)
  22. Vasin M G Phys. Rev. E 106 (4) (2022)
  23. Argatov I, Kocherbitov V Continuum Mech. Thermodyn. 33 (1) 107 (2021)
  24. Makarov A S, Goncharova E V et al Jetp Lett. 113 (11) 723 (2021)
  25. Ojovan M I, Tournier R F Materials 14 (18) 5235 (2021)
  26. Han Z, Jiao G et al Polymers 13 (18) 3042 (2021)
  27. Sanditov D S, Sangadiev S Sh Dokl. Phys. 66 (4) 97 (2021)
  28. Ojovan M I Ceramics 4 (2) 121 (2021)
  29. Sanditov D S, Mashanov A A, Darmaev M V Polym. Sci. Ser. A 62 (2) 79 (2020)
  30. Sanditov D S, Razumovskaya I V, Mashanov A A Polym. Sci. Ser. A 62 (5) 588 (2020)
  31. Sanditov D S, Badmaev S S Inorg Mater 56 (5) 518 (2020)
  32. Louzguine-Luzgin D V, Georgarakis K et al Intermetallics 122 106795 (2020)
  33. Sanditov D S, Mashanov A A, Badmaev S S IOP Conf. Ser.: Mater. Sci. Eng. 1000 (1) 012004 (2020)
  34. Demchenko A P Introduction to Fluorescence Sensing Chapter 16 (2020) p. 613
  35. Sanditov D S, Sangadiev S Sh, Darmaev M V IOP Conf. Ser.: Mater. Sci. Eng. 1000 (1) 012003 (2020)
  36. Kliavinek S S, Kolotova L N J. Exp. Theor. Phys. 131 (2) 284 (2020)
  37. Kirova E M, Norman G E, Pisarev V V Computational Materials Science 172 109367 (2020)
  38. Ojovan M I, Louzguine-Luzgin D V J. Phys. Chem. B 124 (15) 3186 (2020)
  39. Sanditov D S, Mantatov V V, Sangadiev S Sh Phys. Solid State 62 (10) 1924 (2020)
  40. Brazhkin V V Jetp Lett. 112 (11) 745 (2020)
  41. Kirova E M, Norman G E, Pisarev V V Jetp Lett. 110 (5) 359 (2019)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions