Issues

 / 

2018

 / 

August

  

Conferences and symposia


Physics of lightning: new model approaches and prospects of the satellite observations

 a,  a, b,  b,   b, c,  b
a Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation
b Space Research Institute, Russian Academy of Sciences, Profsoyuznaya str. 84/32, Moscow, 117997, Russian Federation
c HSE University, ul. Myasnitskaya 20, Moscow, 101000, Russian Federation

The fundamental problems of lightning physics are reviewed and recent advances in the instrumental (primarily satellite) detection of atmospheric discharge phenomena are discussed. The formation of plasma spots with parameters necessary for the initiation and development of a lightning discharge in a thundercloud is considered as a nonequilibrium phase transition induced by electrostatic noise. The noise is caused by the collective dynamics of charged hydrometeors, i. e., ice particles and water drops suspended in a convective flow. The interaction of plasma formations and their polarization in a large-scale intracloud electric field cause efficient generation of streamers whose description in terms of random graphs and percolation theory forms the basis for the phenomenological representation of discharge as a fractal dissipative structure. This approach enables a number of key thunderstorm electricity problems to be solved, including the lightning initiation mechanism in essentially sub-threshold electric fields, the properties and morphology of various types of lightning discharges, and the self-consistent description of the broadband electromagnetic radiation they emit. Prospects for the further development of the model are discussed and the role of forthcoming satellite experiments in the observation of intense electromagnetic radiation from thunderstorm clouds is examined.

Fulltext pdf (884 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.04.038221
Keywords: atmospheric electricity, physics of lightning, satellite observations of lightning discharges
PACS: 92.60.Pw, 93.85.+q (all)
DOI: 10.3367/UFNe.2017.04.038221
URL: https://ufn.ru/en/articles/2018/8/e/
000449327500005
2-s2.0-85058324531
2018PhyU...61..766I
Citation: Iudin D I, Davydenko S S, Gotlib V M, Dolgonosov M S, Zelenyi L M "Physics of lightning: new model approaches and prospects of the satellite observations" Phys. Usp. 61 766–778 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 30th, September 2017, 19th, April 2017

Оригинал: Иудин Д И, Давыденко С С, Готлиб В М, Долгоносов М С, Зелёный Л М «Физика молнии: новые подходы к моделированию и перспективы спутниковых наблюдений» УФН 188 850–864 (2018); DOI: 10.3367/UFNr.2017.04.038221

References (88) Cited by (17) Similar articles (20) ↓

  1. A.V. Gurevich, A.N. Karashtin et alNonlinear phenomena in the ionospheric plasma. Effects of cosmic rays and runaway breakdown on thunderstorm dischargesPhys. Usp. 52 735–745 (2009)
  2. E.A. Mareev “Global electric circuit research: achievements and prospectsPhys. Usp. 53 504–511 (2010)
  3. K.D. Sabinin “Oceanological aspects of acoustic thermometry of the Arctic OceanPhys. Usp. 38 793–797 (1995)
  4. A.N. Gavrilov, M.M. Slavinskii, A.Yu. Shmelev “Theoretical and experimental investigations of the feasibility of acoustic thermometry of climatic changes in the Arctic OceanPhys. Usp. 38 797–802 (1995)
  5. L.I. Dorman “Cosmic ray variations and space weatherPhys. Usp. 53 496–503 (2010)
  6. L.M. Zelenyi, A.V. Artemyev et alMetastability of current sheetsPhys. Usp. 53 933–941 (2010)
  7. L.M. Zelenyi “Prospects for the development of fundamental physics and astronomy (Scientific session of the general meeting of the Physical Sciences Division of the Russian Academy of Sciences, 15 December 2008)Phys. Usp. 52 1055–1055 (2009)
  8. V.P. Filonenko, I.P. Zibrov et alDiamond-based superhard composites: new synthesis approaches and application prospectsPhys. Usp. 62 207–212 (2019)
  9. B.M. Smirnov “Long-lived light phenomena in the atmospherePhys. Usp. 37 517–519 (1994)
  10. L.M. Zelenyi, A.V. Zakharov, L.V. Ksanfomality “The Solar System: current understanding and future prospectsPhys. Usp. 52 1056–1076 (2009)
  11. L.M. Zelenyi, M.I. Verigin et alJoint scientific session of the Physical Sciences Division of the Russian Academy of Sciences and the Joint Physical Society of the Russian Federation “State of the art and prospects of solar system research” (26 January 2005)Phys. Usp. 48 615 (2005)
  12. A.M. Cherepashchuk “Observing stellar mass and supermassive black holesPhys. Usp. 59 702–712 (2016)
  13. T.K. Breus, V.N. Binhi, A.A. Petrukovich “Magnetic factor of the solar terrestrial relations and its impact on the human body: physical problems and prospects for researchPhys. Usp. 59 502–510 (2016)
  14. A.A. Petrukovich, H.V. Malova et alModern view of the solar wind from micro to macro scalesPhys. Usp. 63 801–811 (2020)
  15. A.Yu. Strizhev “Appendix 1: Principles of statistical treatment of data in data banksPhys. Usp. 37 519–520 (1994)
  16. V.A. Blednov “Geomagnetic component measurements on board of a moving ferromagnetic carrierPhys. Usp. 37 921–925 (1994)
  17. A.A. Petrukovich, M.M. Mogilevsky et alSome aspects of magnetosphere ionosphere relationsPhys. Usp. 58 606–611 (2015)
  18. D.H. Reitze “The first detections of gravitational waves emitted from binary black hole mergersPhys. Usp. 60 823–829 (2017)
  19. E.A. Ekimov, M.V. Kondrin “Nontraditional synthesis of nano- and microcrystal diamonds under high static pressuresPhys. Usp. 62 199–206 (2019)
  20. L.M. Zelenyi, M.I. Verigin et alThe heliosphere and the interaction of the terrestrial planets with the solar windPhys. Usp. 48 615 (2005)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions