Issues

 / 

2018

 / 

August

  

Conferences and symposia


Physics of lightning: new model approaches and prospects of the satellite observations

 a,  a, b,  b,   b, c,  b
a Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation
b Space Research Institute, Russian Academy of Sciences, Profsoyuznaya str. 84/32, Moscow, 117997, Russian Federation
c National Research University Higher School of Economics, ul. Myasnitskaya 20, Moscow, 101000, Russian Federation

The fundamental problems of lightning physics are reviewed and recent advances in the instrumental (primarily satellite) detection of atmospheric discharge phenomena are discussed. The formation of plasma spots with parameters necessary for the initiation and development of a lightning discharge in a thundercloud is considered as a nonequilibrium phase transition induced by electrostatic noise. The noise is caused by the collective dynamics of charged hydrometeors, i. e., ice particles and water drops suspended in a convective flow. The interaction of plasma formations and their polarization in a large-scale intracloud electric field cause efficient generation of streamers whose description in terms of random graphs and percolation theory forms the basis for the phenomenological representation of discharge as a fractal dissipative structure. This approach enables a number of key thunderstorm electricity problems to be solved, including the lightning initiation mechanism in essentially sub-threshold electric fields, the properties and morphology of various types of lightning discharges, and the self-consistent description of the broadband electromagnetic radiation they emit. Prospects for the further development of the model are discussed and the role of forthcoming satellite experiments in the observation of intense electromagnetic radiation from thunderstorm clouds is examined.

Fulltext pdf (884 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.04.038221
Keywords: atmospheric electricity, physics of lightning, satellite observations of lightning discharges
PACS: 92.60.Pw, 93.85.+q (all)
DOI: 10.3367/UFNe.2017.04.038221
URL: https://ufn.ru/en/articles/2018/8/e/
000449327500005
2-s2.0-85058324531
2018PhyU...61..766I
Citation: Iudin D I, Davydenko S S, Gotlib V M, Dolgonosov M S, Zelenyi L M "Physics of lightning: new model approaches and prospects of the satellite observations" Phys. Usp. 61 766–778 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 30th, September 2017, 19th, April 2017

Оригинал: Иудин Д И, Давыденко С С, Готлиб В М, Долгоносов М С, Зелёный Л М «Физика молнии: новые подходы к моделированию и перспективы спутниковых наблюдений» УФН 188 850–864 (2018); DOI: 10.3367/UFNr.2017.04.038221

References (88) ↓ Cited by (16) Similar articles (20)

  1. Christian H J et al. J. Geophys. Res. 108 4005 (2003)
  2. Rakov V A, Uman M A Lightning: Physics And Effects (New York: Cambridge Univ. Press, 2003)
  3. Gurnett D A et al. Geophys. Res. Lett. 6 511 (1979)
  4. Warwick J W et al. Science 212 239 (1981)
  5. Zarka P, Pedersen B M Nature 323 605 (1986)
  6. Gurnett D A et al. J. Geophys. Res. 95 20967 (1990)
  7. Ksanfomaliti L V i dr. Pis’ma Astron. Zhurn. 5 229 (1979); Ksanfomaliti L V et al. Sov. Astron. Lett. 5 122 (1979)
  8. Raizer Yu P Fizika Gazovogo Razryada (Dolgoprudnyi: Intellekt, 2009); Per. na angl. yaz., Raizer Yu P Gas Discharge Physics (Berlin: Springer, 1997)
  9. Sadighi S et al. J. Geophys. Res. Atmos. 120 3660 (2015)
  10. Popov N A J. Phys. D 44 285201 (2011)
  11. Petersen D et al. J. Geophys. Res. 113 17205 (2008)
  12. Solomon R, Schroeder V, Baker M B Q. J. R. Meteorol. Soc. 127 2683 (2001)
  13. Loeb L B J. Geophys. Res. 71 4711 (1966)
  14. Griffiths R, Phelps C J. Geophys. Res. 81 3671 (1976)
  15. Phelps C T, Griffiths R F J. Appl. Phys. 47 2929 (1976)
  16. Gurevich A V, Milikh G M, Roussel-Dupre R Phys. Lett. A 165 463 (1992)
  17. Marshall T C, McCarthy M P, Rust W D J. Geophys. Res. 100 7097 (1995)
  18. Gurevich A V, Zybin K P, Roussel-Dupre R A Phys. Lett. A 254 79 (1999)
  19. Dwyer J R Geophys. Res. Lett. 32 L20808 (2005)
  20. Dwyer J R, Babich L P J. Geophys. Res. 116 A09301 (2011)
  21. Arabshahi S et al. J. Geophys. Res. Space Phys. 119 479 (2014)
  22. Liu N et al. Phys. Rev. Lett. 109 025002 (2012)
  23. Stalevich D D, Uchevatkina T S Tr. Glavnoi Geofizicheskoi Observatorii (405) 33 (1979)
  24. Sin’kevich A A, Dovgalyuk Yu A Izv. Vuzov. Radiofizika 56 908 (2013); Sin’kevich A A, Dovgalyuk Yu A Radiophys. Quantum Electron. 56 818 (2014)
  25. Lowke J J J. Geophys. Res. Atmos. 120 3183 (2015)
  26. Gurevich A V, Zybin K P Phys. Today 58 (5) 37 (2005)
  27. Rison W et al. Nature Commun. 7 10721 (2016)
  28. Trakhtengerts V Yu Dokl. Akad. Nauk SSSR 308 584 (1989)
  29. Trakhtengerts V Yu, Iudin D I Sprites, Elves And Intense Lightning Discharges (NATO Science Series. Ser. II) Vol. 225 (Eds M Füllekrug, E A Mareev, M J Rycroft) (Dordrecht: Springer, 2006) p. 341
  30. Trakhtengerts V Yu, Mareev E A, Sorokin A E Izv. Vuzov. Radiofizika 40 123 (1997); Trakhtengertz V Yu, Mareev E A, Sorokin A E Radiophys. Quantum Electron. 40 77 (1997)
  31. Mareev E A, Sorokin A E, Trakhtengerts V Yu Fizika Plazmy 25 (3) 123 (1999); Mareev E A, Sorokin A E, Trakhtengerts V Yu Plasma Phys. Rep. 25 261 (1999)
  32. Iudin D I, Trakhtengerts V Y, Hayakawa M Phys. Rev. E 68 016601 (2003)
  33. Trakhtengerts V Y et al. Phys. Plasmas 9 2762 (2002)
  34. Trakhtengerts V Y et al. Phys. Plasmas 10 3290 (2003)
  35. Iudin D I, Davydenko C C Izv. Vuzov. Radiofizika 58 530 (2015); Iudin D I, Davydenko S S Radiophys. Quantum Electron. 58 477 (2015)
  36. Davydenko C C, Iudin D I Izv. Vuzov. Radiofizika 59 620 (2016); Davydenko S S, Iudin D I Radiophys. Quantum Electron. 59 560 (2016)
  37. Iudin D I Izv. Vuzov. Radiofizika 60 418 (2017); Iudin D I Radiophys. Quantum Electron. 60 374 (2017)
  38. Landa P S, McClintock P V E Phys. Rep. 323 1 (2000)
  39. Bak P How Nature Works: The Science Of Self-Organized Criticality (New York: Copernicus, 1996)
  40. Wiesmann H J, Zeller H R J. Appl. Phys. 60 1770 (1986)
  41. Mansell E R et al. J. Geophys. Res. 107 4075 (2002)
  42. Iudin D I et al. J. Geophys. Res. Atmos. 122 6416 (2017)
  43. Hayakawa M, Iudin D I, Trakhtengerts V Yu J. Atmos. Solar-Terr. Phys. 70 1660 (2008)
  44. Iudin D I, Iudin F D, Khayakava M Izv. Vuzov. Radiofizika 58 187 (2015); Iudin D I, Iudin F D, Hayakawa M Radiophys. Quantum Electron. 58 173 (2015)
  45. Zelenyi L M, Milovanov A V Usp. Fiz. Nauk 174 809 (2004); Zelenyi L M, Milovanov A V Phys. Usp. 47 749 (2004)
  46. Albrecht R I et al. Proc. of the 14th Intern. Conf. on Atmospheric Electricity, Rio de Janeiro, Brazil, August 8 - 12, 2011
  47. Cecil D J, Buechler D E, Blakeslee R Atmos. Res. 135-136 404 (2013)
  48. Boccippio D J et al. J. Atmos. Oceanic Technol. 17 441 (2000)
  49. Goodman S J et al. Atmos. Res. 125-126 34 (2013)
  50. Holden D N, Munson C P, Devenport J C Geophys. Res. Lett. 22 889 (1995)
  51. Massey R S, Holden D N Radio Sci. 30 1645 (1995)
  52. Massey R S, Holden D N, Shao X M Radio Sci. 33 1755 (1998)
  53. Jacobson A R et al. Radio Sci. 34 337 (1999)
  54. Jacobson A R et al. J. Geophys. Res. 105 15653 (2000)
  55. Jacobson A R, Light T E L J. Geophys. Res. 108 4266 (2003)
  56. Smith D A et al. Radio Sci. 39 RS1010 (2004)
  57. Jacobson A R J. Geophys. Res. 108 4778 (2003)
  58. Jacobson A R, Light T E L Ann. Geophys. 30 389 (2012)
  59. Zelenyi L M i dr. Kosmicheskie Issledovaniya 52 (2) 93 (2014); Zelenyi L M et al. Cosmic Res. 52 87 (2014)
  60. Dolgonosov M S et al. Adv. Space Res. 56 1177 (2015)
  61. Fishman G J et al. Science 264 1313 (1994)
  62. Grefenstette B W et al. J. Geophys. Res. 114 A02314 (2009)
  63. Briggs M S et al. J. Geophys. Res. Space Phys. 118 3805 (2013)
  64. Tavani M et al. (AGILE Team) Phys. Rev. Lett. 106 018501 (2011)
  65. Marisaldi M et al. Geophys. Res. Lett. 42 9481 (2015)
  66. Grove J E et al. Am. Astron. Soc. Meeting Abstr. 219 149.13 (2012)
  67. Kotov Yu D et al. The Coronas-F Space Mission (Astrophysics and Space Science Library) Vol. 400 (Ed. V Kuznetsov) (Berlin: Springer-Verlag, 2014) p. 175
  68. Bogomolov V V i dr. Kosmicheskie Issledovaniya 55 (3) 169 (2017); Bogomolov V V et al. Cosmic Res. 55 159 (2017)
  69. Roussel-Dupré R, Gurevich A V J. Geophys. Res. 101 2297 (1996)
  70. Horsthemke W, Lefever R Noise-Induced Transitions (Berlin: Springer, 1984)
  71. Sancho J M, García-Ojalvo J Lecture Notes In Phys. 557 235 (2000)
  72. Mikhailov A S, Uporov I V Usp. Fiz. Nauk 144 79 (1984); Mikhailov A S, Uporov I V Sov. Phys. Usp. 27 695 (1984)
  73. Dutton J J. Phys. Chem. Ref. Data 4 577 (1975)
  74. Popov N A Fizika Plazmy 36 867 (2010); Popov N A Plasma Phys. Rep. 36 812 (2010)
  75. Hayakawa M, Iudin D I, Mareev E A, Trakhtengerts V Y Phys. Plasmas 14 042902 (2007)
  76. Rompe R, Weizel W Z. Phys. 122 636 (1944)
  77. Teunissen J, Ebert U Comput. Phys. Commun. (2018); Teunissen J, Ebert U arXiv:1701.04329
  78. Le Vine D M J. Geophys. Res. 85 4091 (1980)
  79. Cooray V et al. Atmos. Res. 149 346 (2014)
  80. Silva C L, Pasko V P J. Geophys. Res. Atmos. 120 4989 (2015)
  81. Nag A, Rakov V A J. Geophys. Res. 115 D20103 (2010)
  82. Smith D A et al. J. Geophys. Res. 104 4189 (1999)
  83. Kostinskiy A Yu et al. Geophys. Res. Lett. 42 8165 (2015)
  84. Lazarus S M et al. J. Geophys. Res. Atmos. 120 8469 (2015)
  85. Wiens K C et al. J. Geophys. Res. 113 D05201 (2008)
  86. Uman M A, McLain D K, Krider E P Am. J. Phys. 43 33 (1975)
  87. Jacobson A R, Holzworth R H, Shao X-M Ann. Geophys. 29 1587 (2011)
  88. Dwyer J R, Liu N, Rassoul H K Geophys. Res. Lett. 40 4067 (2013)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions