Issues

 / 

2018

 / 

May

  

On the 60th anniversary of the Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences. On the 100th anniversary of the birth G.I. Budker


Beams of photons with nonzero orbital angular momentum projection: new results

,
Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, prosp. akad. Lavrenteva 11, Novosibirsk, 630090, Russian Federation

Solving Maxwell's equations in cylindrical coordinates yields states in quantum theory with definite values of energy ħ ω, longitudinal momentum ħ kz and total angular momentum projection ħ m on the axis z (where ħ is the Planck constant). Experimentally, for the last quantity values of up to m ∼ 104 have been obtained. The wave front of such a state is like a meat grinder screw, with the lines of force of the Poynting vector representing a screw line. From plane waves, such states differ by the nonzero orbital momentum projection on the direction of motion, and from spherical waves, by the definite direction of motion. For brevity, these states are referred to as 'twisted photons'. In this paper, recent experimental and theoretical results on twisted photons are reviewed, to which the present authors actively contributed. Detailed discussion is given to recent experiments on the production of high intensity beams of terahertz (140 μ m) twisted photons performed on the Novosibirsk free-electron laser at the Budker Institute of Nuclear Physics. Recent theoretical work on the interaction of twisted photons with atoms is summarized. Due to their extra degree of freedom—the projection of the total angular momentum on the direction of motion—twisted photons represent a novel research tool of potentially wide application in physics.

Fulltext pdf (1.5 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.02.038306
Keywords: spin angular momentum, orbital angular momentum, beams of twisted photons, interaction of swirling photons with atoms, terahertz radiation
PACS: 32.80.−t, 41.60.Cr, 42.79.−e (all)
DOI: 10.3367/UFNe.2018.02.038306
URL: https://ufn.ru/en/articles/2018/5/e/
000441069900005
2-s2.0-85051643643
2018PhyU...61..449K
Citation: Knyazev B A, Serbo V G "Beams of photons with nonzero orbital angular momentum projection: new results" Phys. Usp. 61 449–479 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 15th, January 2018, revised: 13th, February 2018, 13th, February 2018

Оригинал: Князев Б А, Сербо В Г «Пучки фотонов с ненулевой проекцией орбитального момента импульса: новые результаты» УФН 188 508–539 (2018); DOI: 10.3367/UFNr.2018.02.038306

References (163) ↓ Cited by (83) Similar articles (2)

  1. Poynting J H Proc. R. Soc. Lond. A 82 560 (1909)
  2. Beth R A Phys. Rev. 50 115 (1936)
  3. Allen L et al. Phys. Rev. A 45 8185 (1992)
  4. Baranova N B, Zel’dovich B Ya Zh. Eksp. Teor. Fiz. 80 1789 (1981); Baranova N B, Zel’dovich B Ya Sov. Phys. JETP 53 925 (1981)
  5. Vasara A, Turunen J, Friberg A T J. Opt. Soc. Am. A 6 1748 (1989)
  6. Bazhenov V Yu, Vasnetsov M V, Soskin M S Pis’ma ZhETF 52 1037 (1990); Bazhenov V Yu, Vasnetsov M V, Soskin M S JETP Lett. 52 429 (1990)
  7. Bazhenov V Yu et al. J. Mod. Opt. 39 999 (1992)
  8. He H et al. Phys. Rev. Lett. 75 826 (1995)
  9. Fickler R et al. Proc. Natl. Acad. Sci. USA 113 13642 (2016)
  10. Bliokh K Y et al. Phys. Rep. 690 1 (2017); Bliokh K Y et al. arXiv:1703.06879
  11. Clark C W et al. Nature 525 504 (2015)
  12. Afanasev A, Serbo V G, Solyanik M arXiv:1709.05625
  13. Abramochkin E G, Volostnikov V G Usp. Fiz. Nauk 174 1273 (2004); Abramochkin E G, Volostnikov V G Phys. Usp. 47 1177 (2004)
  14. Abramochkin E G, Volostnikov V G Sovremennaya Optika Gaussovykh Puchkov (M.: Fizmatlit, 2010)
  15. Torres J P, Torner L (Eds) Twisted Photons (Application Of Light With Orbital Angular Momentum) (New York: Wiley-VCH, 2011)
  16. Andrews D L, Babiker M (Eds) The Angular Momentum Of Light (Cambridge: Cambridge Univ. Press, 2013)
  17. Coullet P et al. Opt. Commun. 73 403 (1989)
  18. Korolenko P V Sorosovskii Obrazovatel’nyi Zhurn. (6) 94 (1998)
  19. Vasil’ev K, Kompanets P Prostranstvennye Modulyatory Sveta (M.: Radio i svyaz’, 1987)
  20. Saleh B E A, Teich M C Fundamentals Of Photonics (Hoboken, N.J.: Wiley Intersci., 2007); Per. na russk. yaz., Salekh B, Teikh M Optika i Fotonika. Printsipy i Primeneniya (Dolgoprudnyi: Intellekt, 2012)
  21. Alekseev A N i dr. Pis’ma ZhTF 24 (9) 68 (1998); Alekseev A N et al. Tech. Phys. Lett. 24 694 (1998)
  22. Volyar A V, Shvedov V G, Fadeeva T A Pis’ma ZhTF 25 (3) 87 (1999); Volyar A V, Shvedov V G, Fadeeva T A Tech. Phys. Lett. 25 203 (1999)
  23. Kennedy S A et al. Phys. Rev. A 66 043801 (2002)
  24. Berry M V, Jeffrey M R, Mansuripur M J. Opt. A 7 685 (2005)
  25. Marrucci L, Manzo C, Paparo D Phys. Rev. Lett. 96 163905 (2006)
  26. Allen L, Padgett M J. Mod. Opt. 54 487 (2007)
  27. Wang X-L et al. Phys. Rev. Lett. 105 253602 (2010)
  28. Marrucci L et al. J. Opt. 13 163905 (2011)
  29. Mirhosseini M et al. Opt. Exp. 21 30196 (2013)
  30. Karpeev S V, Alferov S, Khonina S N Opt. Eng. 52 091718 (2013)
  31. Yu H et al. Sci. Rep. 3 3191 (2013)
  32. Mokhun I et al. Appl. Opt. B 53 38 (2014)
  33. Yu N, Capasso F Nature Mater. 13 139 (2014)
  34. Khonina S N, Almazov A A Komp’yuternaya Optika 24 102 (2002)
  35. Hemsing E et al. Nat. Phys. 9 549 (2013)
  36. Bekshaev A Ya, Bekshaev A S, Mohammed K A Ukr. J. Phys. Opt. 15 123 (2014)
  37. Sasaki S, McNulty I Phys. Rev. Lett. 100 124801 (2008)
  38. Afanasev A, Michailichenko A arXiv:1109.1603
  39. Bahrdt J et al. Phys. Rev. Lett. 111 034801 (2013)
  40. Jentschura U D, Serbo V G Phys. Rev. Lett. 106 013001 (2011)
  41. Jentschura U D, Serbo V G Eur. Phys. J. C 71 1571 (2011)
  42. Sakai Y et al. Phys. Rev. ST Accel. Beams 18 060702 (2015)
  43. Taira Y, Hayakawa T, Katoh M Sci. Rep. 7 5018 (2017)
  44. Katoh M et al. Phys. Rev. Lett. 118 094801 (2017)
  45. Hernández-García C et al. Photonics 4 28 (2017)
  46. Peele A et al. J. Opt. Soc. Am. A 21 1575 (2004)
  47. Leyser T B et al. Phys. Rev. Lett. 102 065004 (2009)
  48. Thide B et al. Phys. Rev. Lett. 99 087701 (2007)
  49. Soifer V A i dr. Fiz. Elem. Chast. At. Yad. 35 1368 (2004); Soifer V A et al. Phys. Part. Nucl. 35 733 (2004)
  50. Ladavac K, Grier D G Opt. Exp. 12 1144 (2004)
  51. Ganchevskaya S V, Skidanov R V "The microturbine rotation by not circular light beam formed by vortex axicon" CEUR Workshop Proc. 1638 24 (2016)
  52. Klar T A, Engel E, Hell S W Phys. Rev. E 64 066613 (2001)
  53. Popiolek-Masajada A, Masajada J, Kurzynowski P Photonics 4 (2) 38 (2017)
  54. Swartzlander G A et al. Opt. Expr. 16 10200 (2008)
  55. Lee J H et al. Phys. Rev. Lett. 97 053901 (2006)
  56. Tamburini F et al. New J. Phys. 14 033001 (2012)
  57. Willner A E et al. Adv. Opt. Photon. 7 66 (2015)
  58. Padgett M J Opt. Exp. 25 11265 (2017)
  59. Ivanov I P Phys. Rev. D 83 093001 (2011)
  60. Ivanov I P, Serbo V G Phys. Rev. A 84 033804 (2011); Ivanov I P, Serbo V G Phys. Rev. A 84 069906 (2011)
  61. Matula O et al. J. Phys. B 46 205002 (2013); Matula O et al. arXiv:1306.3878
  62. Varshalovich D A, Moskalev A N, Khersonskii V K Kvantovaya Teoriya Uglovogo Momenta (L.: Nauka, 1975); Per. na angl. yaz., Varshalovich D A, Moskalev A N, Khersonskii V K Quantum Theory Of Angular Momentum (Singapore: World Scientific Publ., 1988)
  63. Scholz-Marggraf H M et al. Phys. Rev. A 90 013425 (2014)
  64. Peshkov A A et al. Phys. Scripta 91 064001 (2016)
  65. Picón A et al. Opt. Expr. 18 3660 (2010)
  66. Afanasev A, Carlson C E, Mukherjee A Phys. Rev. A 88 033841 (2013)
  67. Afanasev A, Carlson C E, Mukherjee A J. Opt. 18 074013 (2016)
  68. Afanasev A, Carlson C E, Solyanik M J. Opt. 19 105401 (2017)
  69. Rodrigues J D, Marcassa L G, Mendonca J T J. Phys. B 49 074007 (2016); Rodrigues J D, Marcassa L G, Mendonca J T arXiv:1512.05933
  70. Jáuregui R Phys. Rev. A 91 043842 (2015)
  71. Kaplan L, McGuire J H Phys. Rev. A 92 032702 (2015)
  72. Surzhykov A et al. Phys. Rev. A 91 013403 (2015)
  73. Schmiegelow C T et al. Nature Commun. 7 12998 (2016)
  74. Afanasev A et al. New J. Phys. 20 023032 (2018); Afanasev A et al. arXiv:1709.05571
  75. Picón A et al. New J. Phys. 12 083053 (2010)
  76. Serbo V G, Surzhykov A, Zaytsev V A "Ionization of hydrogen like atoms by twisted photons: Going beyond the Born approximation", in preparation
  77. Zaytsev V A, Serbo V G, Shabaev V M Phys. Rev. A 95 012702 (2017); Zaytsev V A, Serbo V G, Shabaev V M arXiv:1610.09648
  78. Berestetskii V B, Lifshits E M, Pitaevskii L P Kvantovaya Elektrodinamika (M: Fizmatlit, 2001); Per. na angl. yaz., Berestetskii V B, Lifshitz E M, Pitaevskii L P Quantum Electrodynamics (Oxford: Butterworth-Heinemann, 1999)
  79. Salvat F et al. Comput. Phys. Commun. 90 151 (1995)
  80. Muller R A et al. Phys. Rev. A 94 041402(R) (2016)
  81. He J X et al. Opt. Exp. 21 20230 (2013)
  82. Xie Z et al. Sci. Rep. 3 03347 (2013)
  83. Miyamoto K et al. Appl. Phys. Lett. 104 261104 (2014)
  84. Imai R et al. Opt. Lett. 39 3714 (2014)
  85. Wei X et al. Appl. Opt. 54 10641 (2015)
  86. Knyazev B A et al. Phys. Rev. Lett. 115 163901 (2015)
  87. Choporova Yu Yu et al. Phys. Rev. A 96 023846 (2017)
  88. Wu Z et al. Opt. Exp. 26 1506 (2018)
  89. Bliokh K Y et al. Phys. Rev. A 82 063825 (2010)
  90. Born M, Wolf E Principles Of Optics (Oxford: Pergamon Press, 1968)
  91. Guenther R D Modern Optics (New York: Wiley, 1990)
  92. Dexheimer S L (Ed.) Terahertz Spectroscopy. Principles And Applications (Boca Raton: CRC Press, 2008)
  93. Wang X et al. Opt. Commun. 283 4626 (2010)
  94. Yu N et al. Science 334 333 (2011)
  95. Vitiello M S et al. Opt. Exp. 23 5167 (2015)
  96. Vaks V L i dr. Usp. Fiz. Nauk 184 739 (2014); Vaks V L et al. Phys. Usp. 57 684 (2014)
  97. Vaks V L i dr. Izv. Vuzov. Radiofizika 59 916 (2016); Vaks V L et al. Radiophys. Quantum Electron. 59 821 (2017)
  98. Knyazev B A, Kulipanov G N, Vinokurov N A Meas. Sci. Technol. 21 054017 (2010)
  99. Seidel W et al. 38th Intern. Conf. Infrared Millimeter Terahertz Waves 2013 (2013) p. 1
  100. Kulipanov G N et al. IEEE Trans. Terahertz Sci. Technol. 5 798 (2015)
  101. Soifer V A (Red.) Difraktsionnaya Komp’yuternaya Optika (M.: Fizmatlit, 2007)
  102. Goncharskii A V i dr. Vvedenie v Komp’yuternuyu Optiku (M.: Izd-vo MGU, 1991)
  103. Durnin J J. Opt. Soc. Am. A 4 651 (1987)
  104. Goodman J W Introduction To Fourier Optics (San Francisco: McGraw-Hill, 1968); Per. na russk. yaz., Gudmen D Vvedenie v Fur’e-optiku (M.: Mir, 1970)
  105. Durnin J, Miceli J J (Jr.), Eberly J H Phys. Rev. Lett. 58 1499 (1987)
  106. Lin Y et al. Appl. Opt. 31 2708 (1992)
  107. Jiang Z, Lu Q, Liu Z Appl. Opt. 34 7183 (1995)
  108. McGloD, Dholakia K Contemp. Phys. 46 15 (2005)
  109. Pyatnitskii L N Volnovye Besselevy Puchki (M.: Fizmatlit, 2012)
  110. Simon D S A Guided Tour Of Light Beams: From Lasers To Optical Knots (Santa Clara, CA: Morgan Claypool Publ., 2016)
  111. Duocastella M et al. Laser Photon. Rev. 6 607 (2012)
  112. Courvoisier F et al. Appl. Phys. A 112 29 (2013)
  113. Purnapatra S B, Bera S, Mondal P P Sci. Rep. 2 692 (2012)
  114. Bitman A, Moshe I, Zalevsky Z Opt. Lett. 37 4164 (2012)
  115. Ok G et al. Sensors 13 71 (2013)
  116. Busch S F et al. J. Infr. Millimeter. Terahertz Waves 36 318 (2015)
  117. Mcleod J H J. Opt. Soc. Am. 44 592 (1954)
  118. Volodkin B et al. Opt. Quantum Electron. 48 223 (2016)
  119. Andreev N E i dr. Kvantovaya Elektron. 23 130 (1996); Andreev N E et al. Quantum Electron. 26 126 (1996)
  120. Degtyarev S A i dr. Komp’yuternaya Optika 38 237 (1992)
  121. Lavrent’ev M A, Shabat B V Metody Teorii Funktsii Kompleksnogo Peremennogo (M.: Nauka, 1987)
  122. Landau L D, Lifshits E M Kvantovaya Mekhanika. Nerelyativistskaya Teoriya (M.: Nauka, 1989); Per. na angl. yaz., Landau L D, Lifshitz E M Quantum Mechanics. Non-Relativistic Theory (Oxford: Pergamon Press, 1977)
  123. Dem’yanenko M A et al. Appl. Phys. Lett. 92 131116 (2008)
  124. Dem’anenko M A et al. J. Opt. Technol. 76 739 (2009)
  125. Dem’yanenko M A et al. Optoelectron. Instrum. Data Process. 47 109 (2011)
  126. Knyazev B A et al. J. Infr. Millimeter Teraherz Waves 32 1207 (2011)
  127. Knyazev B A et al. EPJ Web Conf. 149 05001 (2017)
  128. Choporova Yu Yu, Knyazev B A, Mitkov M S IEEE Trans. Terahertz Sci. Technol. 5 836 (2015)
  129. Arrizón V et al. Opt. Lett. 34 1456 (2009)
  130. Agafonov A N et al. Optoelectron. Instrum. Data Process. 49 189 (2013)
  131. Choporova Y Y et al. EPJ Web Conf. 149 05003 (2017)
  132. Knyazev B A et al. 41st Intern. Conf. Infrared Millimeter Terahertz Waves
  133. Choporova Y et al. Phys. Procedia 84 175 (2016)
  134. Allen L, Padgett M J Opt. Commun. 184 67 (2000)
  135. Berry M V, McDonald K T J. Opt. A 10 035005 (2008)
  136. Bekshaev A, Bliokh K Yu, Soskin M J. Opt. 13 053001 (2011)
  137. Arlt J J. Mod. Opt. 50 1573 (2003)
  138. Ghai D P, Senthilkumarana P, Sirohic R S Opt. Laser Eng. 47 123 (2009)
  139. Ferreira Q S et al. Opt. Lett. 36 3106 (2011)
  140. Masajada J Opt. Commun. 175 289 (2000)
  141. Kumar A, Vaity P, Singh R P Opt. Commun. 283 4141 (2010)
  142. Hickmann J M et al. Phys. Rev. Lett. 105 053904 (2010)
  143. Guo C-S, Yue S-J, Wei G-X Appl. Phys. Lett. 94 231104 (2009)
  144. Berkhout G C G, Beijersbergen M W J. Opt. A 11 094021 (2009)
  145. Sztul H I, Kartazayev V, Alfano R R Opt. Lett. 31 2725 (2006)
  146. Emile O, Emile J Appl. Phys. B 117 487 (2014)
  147. Agranovich V M, Mills D L (Eds) Surface Polaritons: Electromagnetic Waves At Surfaces And Interfaces (Oxford: Oxford Univ. Press, 1982)
  148. Maier S A Plazmonika: Teoriya i Prilozheniya (M. - Izhevsk: PKhD, 2011)
  149. Klimov V V Nanoplazmonika (M.: Fizmatlit, 2010); Klimov V Nanoplasmonic (Boca Raton, FL: CRC Press, Taylor and Francis Group, 2014)
  150. Remnev M A, Klimov V V Usp. Fiz. Nauk 188 169 (2018); Remnev M A, Klimov V V Phys. Usp.
  151. Novotny L, Hecht B Principles Of Nano-Optics (Cambridge: Cambridge Univ. Press, 2006)
  152. Jeon T-I, Grischkowsky D Appl. Phys. Lett. 88 061113 (2006)
  153. Gerasimov V V et al. J. Opt. Soc. B 30 2182 (2013)
  154. Gerasimov V V et al. J. Opt. Soc. B 33 2196 (2016)
  155. Nazarov M et al. Opt. Commun. 277 33 (2007)
  156. Gerasimov V V et al. Opt. Exp. 23 33448 (2015)
  157. Stegeman G I, Wallis R F, Maradudin A A Opt. Lett. 8 386 (1983)
  158. Kotelnikov I A, Gerasimov V V, Knyazev B A Phys. Rev. A 87 023828 (2013)
  159. Birr T et al. Opt. Exp. 23 31755 (2015)
  160. Knyazev B et al. "Quasi-Talbot effect with vortex beams and formation of vortex beamlet arrays" Opt. Exp. (2017), submitted
  161. Heckenberg N R et al. Optical Vortices (Horizons In World Physics, Vol. 228, Ed. M Vasnetsov) (Hauppauge, NY: Nova Sci. Publ., 1999) p. 75
  162. Gatto A et al. J. Opt. 13 064018 (2011)
  163. Serbo V G et al. Phys. Rev. A 92 012705 (2015); Serbo V G arXiv:1505.02587

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions