Issues

 / 

2018

 / 

November

  

Conferences and symposia


Quantum logic gates

 a,  b
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b Moscow State Institute of Electronic Technology (Technical University), Zelenograd, Moscow, Russian Federation

This paper reviews how solid-state or molecular structures in which information transformation processes are governed by quantum mechanical principles can be used to construct logic gates which, similar to classical complementary metal-oxide semiconductor (CMOS), structures do not consume power when in a stationary state. In the first generation quantum analogs of CMOS gates, logical state switching occurs by fast quantum-mechanical tunneling processes, but the transfer characteristics are determined by classical diffusion-drift carrier transport. The second generation quantum analogs of CMOS schemes are open quantum systems in which charge carrier transport occurs coherently. The development of atomic precision lithography technology will allow wide use of quantum molecular logic gates in traditional computer architectures.

Fulltext pdf (836 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.12.038310
Keywords: quantum transport, resonant tunneling, quantum interference, non-Hermitian Hamiltonian, PT-symmetry, exceptional point, coalescence of resonances, logic gates, complementary metal-oxide semiconductor (CMOS) transistor, quantum inverter, switching voltage, transfer characteristics, nanoelectronics, molecular electronics
PACS: 03.65.Nk, 03.65.Xp, 85.35.−p, 85.65.+h (all)
DOI: 10.3367/UFNe.2017.12.038310
URL: https://ufn.ru/en/articles/2018/11/i/
000457154900009
2-s2.0-85055437896
2018PhyU...61.1100G
Citation: Gorbatsevich A A, Shubin N M "Quantum logic gates" Phys. Usp. 61 1100–1115 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 6th, March 2018, 13th, December 2017

Оригинал: Горбацевич А А, Шубин Н М «Квантовые логические вентили» УФН 188 1209–1225 (2018); DOI: 10.3367/UFNr.2017.12.038310

References (92) Cited by (9) Similar articles (13) ↓

  1. Electromagnetic and acoustic waves in metamaterials and structures (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 24 February 2011)54 1161–1192 (2011)
  2. A.B. Shvartsburg, N.S. Erokhin “Resonant tunneling of ultrashort electromagnetic pulses in gradient metamaterials: paradoxes and prospects54 1171–1176 (2011)
  3. I.I. Ryabtsev, I.I. Beterov et alSpectroscopy of cold rubidium Rydberg atoms for applications in quantum information59 196–208 (2016)
  4. D.A. Tatarskiy, A.V. Petrenko et alFeatures of the motion of spin 1/2 particles in a noncoplanar magnetic field59 583–587 (2016)
  5. A.A. Gorbatsevich, O.E. Omel’yanovskii et alMagnetoelectricity (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 20 January 2009)52 835–860 (2009)
  6. A.A. Gorbatsevich, O.E. Omel’yanovskii, V.I. Tsebro “Toroidal ordering in crystals and nanostructures52 835–845 (2009)
  7. N.A. Gippius, S.G. Tikhodeev “Application of the scattering matrix method for calculating the optical properties of metamaterials52 967–971 (2009)
  8. L.P. Pitaevskii “Superfluid Fermi liquid in a unitary regime51 603–608 (2008)
  9. Yu.A. Kosevich “Multichannel propagation and scattering of phonons and photons in low-dimensional nanostructures51 848–859 (2008)
  10. A.A. Gorbatsevich, V.V. Kapaev, Yu.V. Kopaev “Nondissipative dynamics of electrons in nanostructures38 216–217 (1995)
  11. L.A. Khalfin “Zeno’s quantum effect33 (10) 868–869 (1990)
  12. B.A. Volkov, A.A. Gorbatsevich, Yu.V. Kopaev “Anomalous diamagnetic properties of systems with spontaneous current27 464–465 (1984)
  13. P.K. Kashkarov, B.V. Kamenev et alDynamics of nonequilibrium charge carriers in silicon quantum wires41 511–515 (1998)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions