Issues

 / 

2018

 / 

November

  

Conferences and symposia


Quantum logic gates

 a,  b
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b Moscow State Institute of Electronic Technology (Technical University), Zelenograd, Moscow, Russian Federation

This paper reviews how solid-state or molecular structures in which information transformation processes are governed by quantum mechanical principles can be used to construct logic gates which, similar to classical complementary metal-oxide semiconductor (CMOS), structures do not consume power when in a stationary state. In the first generation quantum analogs of CMOS gates, logical state switching occurs by fast quantum-mechanical tunneling processes, but the transfer characteristics are determined by classical diffusion-drift carrier transport. The second generation quantum analogs of CMOS schemes are open quantum systems in which charge carrier transport occurs coherently. The development of atomic precision lithography technology will allow wide use of quantum molecular logic gates in traditional computer architectures.

Fulltext pdf (836 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.12.038310
Keywords: quantum transport, resonant tunneling, quantum interference, non-Hermitian Hamiltonian, PT-symmetry, exceptional point, coalescence of resonances, logic gates, complementary metal-oxide semiconductor (CMOS) transistor, quantum inverter, switching voltage, transfer characteristics, nanoelectronics, molecular electronics
PACS: 03.65.Nk, 03.65.Xp, 85.35.−p, 85.65.+h (all)
DOI: 10.3367/UFNe.2017.12.038310
URL: https://ufn.ru/en/articles/2018/11/i/
000457154900009
2-s2.0-85055437896
2018PhyU...61.1100G
Citation: Gorbatsevich A A, Shubin N M "Quantum logic gates" Phys. Usp. 61 1100–1115 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 6th, March 2018, 13th, December 2017

Îðèãèíàë: Ãîðáàöåâè÷ À À, Øóáèí Í Ì «Êâàíòîâûå ëîãè÷åñêèå âåíòèëè» ÓÔÍ 188 1209–1225 (2018); DOI: 10.3367/UFNr.2017.12.038310

References (92) ↓ Cited by (9) Similar articles (13)

  1. Hu C S Modern Semiconductor Devices For Integrated Circuits (Upper Saddle River, NJ: Prentice Hall, 2010)
  2. Horowitz P, Hill W The Art Of Electronics (Cambridge: Cambridge Univ. Press, 1989)
  3. Gorbatsevich A A et al Phys. Low-Dim. Struct. (4) 5 (1994)
  4. Gorbatsevich A A i dr Mikroelektronika 23 17 (1994)
  5. Gorbatsevich A A i dr Elektronnaya Promyshlennost’ (4) 28 (1995)
  6. Gorbatsevich A A, Kapaev V V, Kopaev Yu V Zh. Eksp. Teor. Fiz. 107 1320 (1995); Gorbatsevich A A, Kapaev V V, Kopaev, Yu V JETP 80 734 (1995)
  7. Prince B Vertical 3D Memory Technologies (Chichester: John Wiley and Sons, 2014)
  8. International Technology Roadmap for Semiconductors 2015, http://www.itrs2.net/
  9. Gorbatsevich A A, Shubin N M Pis’ma ZhETF 103 866 (2016); Gorbatsevich A A, Shubin N M JETP Lett. 103 769 (2016)
  10. Gorbatsevich A A, Shubin N M Ann. Physics 376 353 (2017)
  11. Gorbatsevich A A, Shubin N M Phys. Rev. B 96 205441 (2017)
  12. Landau L D, Lifshits E M Kvantovaya Mekhanika: Nerelyativistskaya Teoriya (M.: Fizmatlit, 2013); Per. na angl. yaz., Landau L D, Lifshitz E M Quantum Mechanics: Non-Relativistic Theory (Oxford: Elsevier, 2013)
  13. Lindblad G Commun. Math. Phys. 48 119 (1976)
  14. Brasil C A, Fanchini F F, R Napolitano R de J Rev. Bras. Ensino Fís. 35 (1) 01 (2013)
  15. Kurobe A et al Semicond. Sci. Technol. 9 1744 (1994)
  16. BirjulP I et al Semicond. Sci. Technol. 12 427 (1997)
  17. Valiev K A Usp. Fiz. Nauk 175 3 (2005); Valiev K A Phys. Usp. 48 1 (2005)
  18. Joachim C, Renaud N, Hliwa M Adv. Mater. 24 312 (2012)
  19. Hatano N et al Prog. Theor. Phys. 119 187 (2008)
  20. Feshbach H Ann. Physics 5 357 (1958)
  21. Feshbach H Ann. Physics 19 287 (1962)
  22. Feshbach H Ann. Physics 43 410 (1967)
  23. Siegert A J F Phys. Rev. 56 750 (1939)
  24. Sasada K, Hatano N, Ordonez G J. Phys. Soc. Jpn. 80 104707 (2011)
  25. Fano U Phys. Rev. 124 1866 (1961)
  26. Mies F H, Krauss M J. Chem. Phys. 45 4455 (1966)
  27. Mies F H Phys. Rev. 175 164 (1968)
  28. Moldauer P A Phys. Rev. Lett. 18 249 (1967)
  29. Müller M et al Phys. Rev. E 52 5961 (1995)
  30. Persson E, Rotter I Phys. Rev. C 59 164 (1999)
  31. Persson E et al Phys. Rev. Lett. 85 2478 (2000)
  32. Moiseyev N Non-Hermitian Quantum Mechanics (Cambridge: Cambridge Univ. Press, 2011)
  33. Miroshnichenko A E, Flach S, Kivshar Yu S Rev. Mod. Phys. 82 2257 (2010)
  34. Monticone F, Alù A Rep. Prog. Phys. 80 36401 (2017)
  35. Hsu C W et al Nature Rev. Mater. 1 16048 (2016)
  36. Breit G, Wigner E Phys. Rev. 49 519 (1936)
  37. Klaiman S, Moiseyev N J. Phys. B 43 185205 (2010)
  38. Romo R, Garcírón G Phys. Rev. B 49 14016 (1994)
  39. Dragunov V P, Neizvestnyi I G, Gridchin V A Osnovy Nanoelektroniki (M.: Logos, 2006)
  40. Gorbatsevich A A, Zhuravlev M N, Kapaev V V Zh. Eksp. Teor. Fiz. 134 338 (2008); Gorbatsevich A A, Zhuravlev M N, Kapaev V V JETP 107 288 (2008)
  41. Vanroose W et al J. Phys. A 30 5543 (1997)
  42. Vanroose W et al Phys. Rev. A 64 62708 (2001)
  43. Heiss W D, Wunner G Eur. Phys. J. D 68 284 (2014)
  44. Ambichl P et al Phys. Rev. X 3 041030 (2013)
  45. Chong Y D, Ge L, Stone A D Phys. Rev. Lett. 106 93902 (2011)
  46. Aharonov Y, Bohm D Phys. Rev. 115 485 (1959)
  47. Bender C M, Boettcher S Phys. Rev. Lett. 80 5243 (1998)
  48. Bender C M, Boettcher S, Meisinger P N J. Math. Phys. 40 2201 (1999)
  49. Bender C M Rep. Prog. Phys. 70 947 (2007)
  50. Mostafazadeh A J. Math. Phys. 43 205 (2002)
  51. Mostafazadeh A J. Math. Phys. 43 2814 (2002)
  52. Mostafazadeh A J. Math. Phys. 43 3944 (2002)
  53. Zyablovskii A A i dr Usp. Fiz. Nauk 184 1177 (2014); Zyablovsky A A et al Phys. Usp. 57 1063 (2014)
  54. Eleuch H, Rotter I Eur. Phys. J. D 69 229 (2015)
  55. Eleuch H, Rotter I Eur. Phys. J. D 69 230 (2015)
  56. Kato T Perturbation Theory For Linear Operators (Berlin: Springer, 1995)
  57. Mandal I Europhys. Lett. 110 67005 (2015)
  58. San-Jose P et al Sci. Rep. 6 21427 (2016)
  59. Kreibich M et al Phys. Rev. A 87 051601(R) (2013)
  60. Chtchelkatchev N M et al Phys. Rev. Lett. 109 150405 (2012)
  61. Guo A et al Phys. Rev. Lett. 103 093902 (2009)
  62. Regensburger A et al Nature 488 167 (2012)
  63. Bittner S et al Phys. Rev. Lett. 108 24101 (2012)
  64. Alaeian H, Dionne J A Phys. Rev. A 89 33829 (2014)
  65. Mostafazadeh A Ann. Physics 368 56 (2016)
  66. Liertzer M et al Phys. Rev. Lett. 108 173901 (2012)
  67. Brandstetter M et al Nature Commun. 5 4034 (2014)
  68. Landau L D, Lifshits E M Elektrodinamika Sploshnykh Sred (M.: Fizmatlit, 2003); Per. na angl. yaz., Landau L D, Lifshitz E M Electrodynamics Of Continuous Media (Oxford: Elsevier, 2013)
  69. Zyablovsky A A et al Phys. Rev. A 89 33808 (2014)
  70. Cannata F, Dedonder J-P, Ventura A Ann. Physics 322 397 (2007)
  71. JL, Song Z Phys. Rev. A 81 32109 (2010)
  72. JL, Song Z J. Phys. A 44 375304 (2011)
  73. Hernandez-Coronado H, Krejčiřík D, Siegl P Phys. Lett. A 375 2149 (2011)
  74. Datta S Electronic Transport In Mesoscopic Systems (Cambridge: Cambridge Univ. Press, 1997)
  75. Büttiker M Phys. Rev. Lett. 57 1761 (1986)
  76. Theis T N, Solomon P M Proc. IEEE 98 2005 (2010)
  77. Ionescu A M, Riel H Nature 479 329 (2011)
  78. Celardo G L, Kaplan L Phys. Rev. B 79 155108 (2009)
  79. Celardo G L et al Phys. Rev. B 82 165437 (2010)
  80. Nitzan A, Ratner M A Science 300 1384 (2003)
  81. Kergueris C et al Phys. Rev. B 59 12505 (1999)
  82. Papadopoulos T A, Grace I M, Lambert C J Phys. Rev. B 74 193306 (2006)
  83. Kaasbjerg K, Flensberg K Nano Lett. 8 3809 (2008)
  84. Osorio E A et al Nano Lett. 7 3336 (2007)
  85. Puczkarski P et al Appl. Phys. Lett. 107 133105 (2015)
  86. PerrM L et al Nature Nanotechnol. 8 282 (2013)
  87. Mizuta H, Tanoue T The Physics And Applications Of Resonant Tunnelling Diodes (Cambridge: Cambridge Univ. Press, 2006)
  88. Li Y et al Sci. Rep. 6 33686 (2016)
  89. Stafford C A, Cardamone D M, Mazumdar S Nanotechnology 18 424014 (2007)
  90. Gorbatsevich A A, Zhuravlev M N, Kataeva T S Mikroelektronika 46 451 (2017); Gorbatsevich A A, Zhuravlev M N, Kataeva T S Russ. Microelectronics 46 414 (2017)
  91. Miroshnichenko A E, Kivshar Yu S Phys. Rev. E 72 056611 (2005)
  92. Dente A D, Bustos-Marún R A, Pastawski H M Phys. Rev. A 78 062116 (2008)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions