Issues

 / 

2018

 / 

November

  

Reviews of topical problems


Hybrid nanophotonics

 a,  a,  a,  b
a ITMO University, Kronverksky Pr. 49, bldg. A, St. Petersburg, 197101, Russian Federation
b Nonlinear Physics Centre, Research School of Physical Sciences and Engineering, Australian National University, Mlls Road, Bldng 59, Canberra, 0200, Australia

Advances in the field of plasmonics, i.e., nanophotonics exploiting the optical properties of metal nanostructures, paved the way for the development of ultrasensitive devices, including biological and other sensors, that rely on the nanoscale localization of an electromagnetic field for their operation. However, the high dissipation loss of metal nanostructures limit their use in many current applications, including metasurfaces, metamaterials, and nanowaveguides, thus requiring the development of new devices that combine metal nanostructures with highly refractive dielectric nanoparticles. The resulting metal-dielectric (hybrid) nanostructures have demonstrated many interesting properties from the practical application viewpoint (the moderate dissipation loss, resonant magnetooptical response, strong nonlinear optical properties, etc.), thus placing this field at the vanguard of the modern science of light. This paper reviews the current state of theoretical and experimental research into hybrid metal-dielectric nanoantennas and their derivative nanostructures capable of selectively scattering light waves, directionally amplifying and transmitting optical signals, controlling the propagation of such signals, and generating optical harmonics.

Fulltext pdf (5 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.12.038275
Keywords: nanophotonics, plasmonics, high-index dielectric nanoparticles, optical magnetic response, hybrid nanostructures, nanoantennas
PACS: 42.25.−p, 42.79.−e, 78.67.−n (all)
DOI: 10.3367/UFNe.2017.12.038275
URL: https://ufn.ru/en/articles/2018/11/a/
000457154900001
2-s2.0-85062295983
2018PhyU...61.1035L
Citation: Lepeshov S I, Krasnok A E, Belov P A, Miroshnichenko A E "Hybrid nanophotonics" Phys. Usp. 61 1035–1050 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 17th, July 2017, revised: 14th, December 2017, 26th, December 2017

Оригинал: Лепешов С И, Краснок А Е, Белов П А, Мирошниченко А Е «Гибридная нанофотоника» УФН 188 1137–1154 (2018); DOI: 10.3367/UFNr.2017.12.038275

References (229) Cited by (62) ↓ Similar articles (20)

  1. Lebedev V S, Kondorskiy A D Uspekhi Fizicheskikh Nauk 195 50 (2025) [Lebedev V S, Kondorskiy A D Phys. Usp. 68 46 (2025)]
  2. Barreda G A, Bashiri A et al All-Dielectric Nanophotonics (2024) p. 365
  3. Tang X-T, Ma L et al Opt. Express 32 16746 (2024)
  4. Otoo I A, Basharin A et al 125 (26) (2024)
  5. Gritsienko A, Gavrilyuk A et al Opt Quant Electron 56 (5) (2024)
  6. Oleynik P, Berkmann F et al Nano Lett. 24 3142 (2024)
  7. Xie B, Ma L et al J. Phys. D: Appl. Phys. 57 255110 (2024)
  8. Bhatia P, Sharma S et al Plasmonics (2024)
  9. Mironov N A, Gayduk A E, Golod S V 2024 IEEE 25th International Conference of Young Professionals in Electron Devices and Materials (EDM), (2024) p. 240
  10. Kucherenko M G, Nalbandyan V M, Chmereva T M Opt. Spectrosc. 131 554 (2023)
  11. Avakyan L A, Alekseev R O et al (15) 3 (2023)
  12. Dmitriev P A, Lassalle E et al ACS Photonics 10 582 (2023)
  13. Avakyan L A, Alekseev R O et al Glass Ceram 80 85 (2023)
  14. Dynich R A, Ponyavina A N J Appl Spectrosc 90 1019 (2023)
  15. Hlushchenko A V, Shcherbinin V I et al Phys. Rev. A 108 (6) (2023)
  16. Ryzhova T V, Bukharov D N, Arakelyan S M Nauka Teh. 22 231 (2023)
  17. Lu J, Huang Y, Yang G Materials Today Nano 22 100333 (2023)
  18. Koromyslov S, Ageev E et al Nanomaterials 12 1756 (2022)
  19. Shen Sh, Wang J et al Opt. Express 30 38256 (2022)
  20. Barreda Á, Vitale F et al Advanced Photonics Research 3 (4) (2022)
  21. Ignatyeva D O, Krichevsky D M et al 132 (10) (2022)
  22. Krasnok A, Alù A ACS Photonics 9 2 (2022)
  23. Dvinin S A, Sinkevich O A et al Plasma Phys. Rep. 48 438 (2022)
  24. Ponyavina A N, Barbarchyk K A et al Doklady Belorusskogo Gosudarstvennogo Universiteta Informatiki I Radioèlektroniki 19 15 (2022)
  25. Shklyaev A A, Utkin D E et al Sci Rep 12 (1) (2022)
  26. Selina N V Uspekhi Fizicheskikh Nauk 192 443 (2022)
  27. [Selina N V Phys.-Usp. 65 406 (2022)]
  28. Kiselev A, Martin O J F Phys. Rev. B 106 (20) (2022)
  29. Vladimirova Yu V, Zadkov V N Uspekhi Fizicheskikh Nauk 192 267 (2022)
  30. [Vladimirova Yu V, Zadkov V N Phys.-Usp. 65 245 (2022)]
  31. Huang D, Liu Sh, Yang K Nanomaterials 12 710 (2022)
  32. Ma L, Hu M-L et al SSRN Journal (2022)
  33. Ma L, Hu M-L et al Results In Physics 40 105815 (2022)
  34. Mu H, Wang Yu et al Appl. Opt. 61 7125 (2022)
  35. Hu J, Bai W et al Optics Communications 511 127987 (2022)
  36. Huang D, Liu Sh et al Nanomaterials 12 2084 (2022)
  37. Klimov V V Phys.-Usp. 64 990 (2021)
  38. Kim K-H Plasmonics 16 77 (2021)
  39. Barreda A, Hell S et al Journal Of Quantitative Spectroscopy And Radiative Transfer 276 107900 (2021)
  40. Gritsienko A V, Kurochkin N S et al J. Phys.: Conf. Ser. 2015 012052 (2021)
  41. Kovalec N P, Kozhina E P et al Bull. Russ. Acad. Sci. Phys. 85 854 (2021)
  42. Kozhina E P, Bedin S A et al Applied Sciences 11 1375 (2021)
  43. Abdollahramezani S, Hemmatyar O et al Nano Lett. 21 1238 (2021)
  44. Dvinin S, Sinkevich O et al Prikl. Fiz. (4) 25 (2021)
  45. Ray D, Kiselev A, Martin O J F Opt. Express 29 24056 (2021)
  46. Vladimirova Yu V, Zadkov V N Nanomaterials 11 1919 (2021)
  47. Cuscunà M, Manoccio M et al Mater. Horiz. 8 187 (2021)
  48. Utkin D E, Tsarev A V et al Optoelectron.Instrument.Proc. 57 494 (2021)
  49. Zheng M, Yang Yu et al Microelectronic Engineering 233 111420 (2020)
  50. Voronov A A, Ignatyeva D O et al J. Phys.: Conf. Ser. 1461 012189 (2020)
  51. (INTERNATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF COMBUSTION AND PROCESSES IN EXTREME ENVIRONMENTS (COMPHYSCHEM’20-21) and VI INTERNATIONAL SUMMER SCHOOL “MODERN QUANTUM CHEMISTRY METHODS IN APPLICATIONS”) Vol. INTERNATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF COMBUSTION AND PROCESSES IN EXTREME ENVIRONMENTS (COMPHYSCHEM’20-21) and VI INTERNATIONAL SUMMER SCHOOL “MODERN QUANTUM CHEMISTRY METHODS IN APPLICATIONS”Laser annealing process for the tuning of the hybrid-sponge nanostructure photoluminescenceArtemLarinEduardAgeevDmitryZuev2304 (2020) p. 020078
  52. (INTERNATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF COMBUSTION AND PROCESSES IN EXTREME ENVIRONMENTS (COMPHYSCHEM’20-21) and VI INTERNATIONAL SUMMER SCHOOL “MODERN QUANTUM CHEMISTRY METHODS IN APPLICATIONS”) Vol. INTERNATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF COMBUSTION AND PROCESSES IN EXTREME ENVIRONMENTS (COMPHYSCHEM’20-21) and VI INTERNATIONAL SUMMER SCHOOL “MODERN QUANTUM CHEMISTRY METHODS IN APPLICATIONS”Interaction effects of nano-patch antenna with external resonatorA. V.GritsienkoS. P.EliseevN. S.KurochkinA. G.Vitukhnovsky2304 (2020) p. 020042
  53. Sun Ya, Yaroshenko V et al Opt. Mater. Express 10 29 (2020)
  54. Yan J, Liu X et al Materials Science And Engineering: R: Reports 141 100563 (2020)
  55. Abdollahramezani S, Hemmatyar O et al 9 1189 (2020)
  56. Es’kin V A, Kudrin A V, Popova A A 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, (2020) p. 1
  57. Yang J-H, Yu M-W, Chen K-P Sci Rep 9 (1) (2019)
  58. Zhang Ya, Yue P et al Opt. Express 27 16143 (2019)
  59. Renaut C, Lang L et al Nano Lett. 19 877 (2019)
  60. Zhang T, Xu J et al Nanomaterials 9 629 (2019)
  61. Kizka V A, Svezhentsev A Y 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), (2019) p. 157
  62. Voronov A A, Ignatyeva D O et al 2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), (2019) p. X-447

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions