Issues

 / 

2018

 / 

January

  

Conferences and symposia


Exotic Lifshitz transitions in topological materials

 a, b, c
a Low Temperature Laboratory, Aalto University, PO Box 15100, Aalto, FI-00076, Finland
b Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 119334, Russian Federation
c Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

Topological Lifshitz transitions involve many types of topological structures in momentum and frequency-momentum spaces, such as Fermi surfaces, Dirac lines, Dirac and Weyl points, etc., each of which has its own stability-supporting topological invariant (N1, N2, N3, Ñ3, etc.). The Fermi surface and Dirac line topologies and the interconnection of objects of different dimensionality produce a variety of Lifshitz transition classes. Lifshitz transitions have important implications for many areas of physics. To give examples, transition-related singularities can increase the superconducting transition temperature; Lifshitz transitions are the possible origin of the small masses of elementary particles in our Universe; a black hole horizon serves as the surface of Lifshitz transition between the vacua with type-I and type-II Weyl points, etc.

Fulltext pdf (722 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.01.038218
Keywords: topological Lifshitz transitions, Fermi surface, Dirac point, Weyl point, black hole event horizon
PACS: 04.70.−s, 71.30.+h, 73.22.−f (all)
DOI: 10.3367/UFNe.2017.01.038218
URL: https://ufn.ru/en/articles/2018/1/g/
000429883000005
2-s2.0-85045746660
2018PhyU...61...89V
Citation: Volovik G E "Exotic Lifshitz transitions in topological materials" Phys. Usp. 61 89–98 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 23rd, January 2017, 18th, January 2017

Оригинал: Воловик Г Е «Экзотические переходы Лифшица в топологической материи» УФН 188 95–105 (2018); DOI: 10.3367/UFNr.2017.01.038218

References (75) Cited by (99) Similar articles (20) ↓

  1. G.E. Volovik “Structure of vortices in rotating superfluid 3HeSov. Phys. Usp. 28 843–844 (1985)
  2. I.A. Troyan, D.V. Semenok et alHigh-temperature superconductivity in hydridesPhys. Usp. 65 748–761 (2022)
  3. S.A. Tarasenko “Electron properties of topological insulators. The structure of edge states and photogalvanic effectsPhys. Usp. 61 1026–1030 (2018)
  4. M.V. Sadovskii “Limits of Eliashberg theory and bounds for superconducting transition temperaturePhys. Usp. 65 724–739 (2022)
  5. V.T. Dolgopolov “Percolation metal-dielectric transitions in two-dimensional electron systemsPhys. Usp. 39 398–401 (1996)
  6. A.M. Cherepashchuk “Observing stellar mass and supermassive black holesPhys. Usp. 59 702–712 (2016)
  7. Yu.E. Lozovik “Plasmonics and magnetoplasmonics based on graphene and a topological insulatorPhys. Usp. 55 1035–1039 (2012)
  8. V.M. Pudalov “Metal-insulator transitions and related phenomena in a strongly correlated two-dimensional electron systemPhys. Usp. 49 203–208 (2006)
  9. V.M. Pudalov “The metal-insulator transition in a two-dimensional system at zero magnetic fieldPhys. Usp. 41 211–214 (1998)
  10. V.F. Gantmakher “Superconductor-insulator transitions and insulators with localized pairsPhys. Usp. 41 214–217 (1998)
  11. A.G. Zabrodskii “Coulomb gap and metal-insulator transitions in doped semiconductorsPhys. Usp. 41 722–726 (1998)
  12. A. Gold “Superconductor-insulator transition in the disordered Bose condensate: a discussion of the mode-coupling approachPhys. Usp. 41 217–220 (1998)
  13. V.A. Alekseev, E.G. Maksimov et alMetal-dielectric phase transitions (from materials of the First All-Union Conference on Metal-Dielectric Phase Transitions, Moscow, June 1972)Sov. Phys. Usp. 17 118–123 (1974)
  14. V.T. Dolgopolov “Manifestation of interactions in the transport properties of low-dimensional electronic systemsPhys. Usp. 57 (7) (2014)
  15. Advances in astronomy (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 27 February 2013)Phys. Usp. 56 704–737 (2013)
  16. Yu.N. Gnedin “Investigating supermassive black holes: a new method based on the polarimetric observations of active galactic nucleiPhys. Usp. 56 709–714 (2013)
  17. Modern problems in the physical sciences (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 30 November 2011)Phys. Usp. 55 808–837 (2012)
  18. Plasmonics (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 21 February 2012)Phys. Usp. 55 1035–1058 (2012)
  19. V.N. Lukash, E.V. Mikheeva, V.N. Strokov “Generation of cosmological flows in general relativityPhys. Usp. 55 831–837 (2012)
  20. I.D. Novikov, N.S. Kardashev et alScientific session of the Physical Sciences Division of the Russian Academy of Sciences (25 April 2007)Phys. Usp. 50 965–971 (2007)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions