Issues

 / 

2018

 / 

January

  

Conferences and symposia


Exotic Lifshitz transitions in topological materials

 a, b, c
a Low Temperature Laboratory, Aalto University, PO Box 15100, Aalto, FI-00076, Finland
b Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 119334, Russian Federation
c Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

Topological Lifshitz transitions involve many types of topological structures in momentum and frequency-momentum spaces, such as Fermi surfaces, Dirac lines, Dirac and Weyl points, etc., each of which has its own stability-supporting topological invariant (N1, N2, N3, Ñ3, etc.). The Fermi surface and Dirac line topologies and the interconnection of objects of different dimensionality produce a variety of Lifshitz transition classes. Lifshitz transitions have important implications for many areas of physics. To give examples, transition-related singularities can increase the superconducting transition temperature; Lifshitz transitions are the possible origin of the small masses of elementary particles in our Universe; a black hole horizon serves as the surface of Lifshitz transition between the vacua with type-I and type-II Weyl points, etc.

Fulltext pdf (722 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.01.038218
Keywords: topological Lifshitz transitions, Fermi surface, Dirac point, Weyl point, black hole event horizon
PACS: 04.70.−s, 71.30.+h, 73.22.−f (all)
DOI: 10.3367/UFNe.2017.01.038218
URL: https://ufn.ru/en/articles/2018/1/g/
000429883000005
2-s2.0-85045746660
2018PhyU...61...89V
Citation: Volovik G E "Exotic Lifshitz transitions in topological materials" Phys. Usp. 61 89–98 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 23rd, January 2017, 18th, January 2017

Оригинал: Воловик Г Е «Экзотические переходы Лифшица в топологической материи» УФН 188 95–105 (2018); DOI: 10.3367/UFNr.2017.01.038218

References (75) ↓ Cited by (93) Similar articles (20)

  1. Lifshits I M Zh. Eksp. Teor. Fiz. 38 1569 (1960); Lifshits I M Sov. Phys. JETP 11 1130 (1960)
  2. Hořava P Phys. Rev. Lett. 95 016405 (2005)
  3. Volovik G E The Universe In A Helium Droplet (Oxford: Clarendon Press, 2003)
  4. Volovik G E Lecture Notes Phys. 718 31 (2007); Volovik G E cond-mat/0601372
  5. Volovik G E FNT 43 57 (2017); Volovik G E Low Temp. Phys. 43 47 (2017); Volovik G E arXiv:1606.08318
  6. Zhang K, Volovik G E Pis’ma ZhETF 105 504 (2017); Zhang K, Volovik G E JETP Lett. 105 519 (2017)
  7. Volovik G E Pis’ma ZhETF 46 81 (1987); Volovik G E JETP Lett. 46 98 (1987)
  8. Dmitriev V V et al. Phys. Rev. Lett. 115 165304 (2015)
  9. Froggatt C D, Nielsen H B Origin Of Symmetry (Singapore: World Scientific, 1991)
  10. Volovik G E Pis’ma ZhETF 91 61 (2010); Volovik G E JETP Lett. 91 55 (2010); Volovik G E arXiv:0912.0502
  11. Sidharth B G et al. Int. J. Mod. Phys. A 31 1630051 (2016); Sidharth B G et al. arXiv:1605.01169
  12. Sidharth B G et al. New Adv. Phys. 10 1 (2016)
  13. Laperashvili L V, Nielsen H B, Das C R Int. J. Mod. Phys. A 31 1650029 (2016)
  14. Bennett D L, Nielsen H B, Froggatt C D hep-ph/9710407
  15. Volovik G E Pis’ma ZhETF 79 131 (2004); Volovik G E JETP Lett. 79 101 (2004); Volovik G E hep-ph/0309144
  16. Volovik G E Phys. Lett. A 142 282 (1989)
  17. Liu W V, Wilczek F Phys. Rev. Lett. 90 047002 (2003)
  18. Barzykin V, Gor’kov L P Phys. Rev. B 76 014509 (2007)
  19. Agterberg D F, Brydon P M R, Timm C Phys. Rev. Lett. 118 127001 (2017)
  20. Timm C et al. Phys. Rev. 96 094526 (2017); Timm C et al. arXiv:1707.02739
  21. Volovik G E Usp. Fiz. Nauk 143 73 (1984); Volovik G E Sov. Phys. Usp. 27 363 (1984)
  22. Mäkinen J T et al. 28th Intern. Conf. on Low Temperature Physics, LT28, 9 - 16 August 2017, Gothenburg, Sweden, Abstracts (2017) http://www.trippus.se/eventus/userfiles/84948.pdf
  23. Vollhardt D, Maki K, Schopohl N J. Low Temp. Phys. 39 79 (1980)
  24. Zhu T et al. Phys. Rev. Fluids 1 044502 (2016)
  25. Voit J Rep. Prog. Phys. 58 977 (1995)
  26. Dzyaloshinskii I Phys. Rev. B 68 085113 (2003)
  27. Farid B, Tsvelik A M arXiv:0909.2886; Kokalj J, Prelovšek P Phys. Rev. B 78 153103 (2008); Kokalj J, Prelovšek P arXiv:0803.4468
  28. Pracht U S et al. Phys. Rev. B 93 100503(R) (2016)
  29. Khodel’ V A, Shaginyan V R Pis’ma ZhETF 51 488 (1990); Khodel’ V A, Shaginyan V R JETP Lett. 51 553 (1990)
  30. Volovik G E Pis’ma ZhETF 53 208 (1991); Volovik G E JETP Lett. 53 222 (1991)
  31. Nozières P J. Physique I 2 443 (1992)
  32. Shashkin A A et al. Phys. Rev. Lett. 112 186402 (2014)
  33. Shashkin A A et al. Pis’ma ZhETF 102 40 (2015); Shashkin A A et al. JETP Lett. 102 36 (2015)
  34. Yudin D et al. Phys. Rev. Lett. 112 070403 (2014)
  35. Volovik G E Pis’ma ZhETF 59 798 (1994); Volovik G E JETP Lett. 59 830 (1994)
  36. Melnikov M Yu et al. Sci. Rep. 7 14539 (2017); Melnikov M Yu et al. arXiv:1604.08527
  37. Drozdov A P et al. Nature 525 73 (2015)
  38. Eremets M I, Drozdov A P Usp. Fiz. Nauk 186 1257 (2016); Eremets M I, Drozdov A P Phys. Usp. 59 1154 (2016)
  39. Quan Y, Pickett W E Phys. Rev. B 93 104526 (2016)
  40. Bianconi A, Jarlborg T Novel Supercond. Mater. 1 37 (2015); Bianconi A, Jarlborg T arXiv:1507.01093
  41. Souza T X R, Marsiglio F Int. J. Mod. Phys. B 31 1745003 (2017); Souza T X R, Marsiglio F arXiv:1708.07264
  42. Shi X et al. Nature Commun. 8 14988 (2017)
  43. von Neumann J, Wigner E Phys. Z. 30 467 (1929)
  44. Volovik G E, Zubkov M A Nucl. Phys. B 881 514 (2014)
  45. Volovik G E, Konyshev V A Pis’ma ZhETF 47 207 (1988); Volovik G E, Konyshev V A JETP Lett. 47 250 (1988)
  46. Klinkhamer F R, Volovik G E Int. J. Mod. Phys. A 20 2795 (2005); Klinkhamer F R, Volovik G E hep-th/0403037
  47. Volovik G E, Gor’kov L P Zh. Eksp. Teor. Fiz. 88 1412 (1985); Volovik G E, Gor’kov L P Sov. Phys. JETP 61 843 (1985)
  48. Volovik G E Pis’ma ZhETF 105 245 (2017); Volovik G E JETP Lett. 105 273 (2017); Volovik G E arXiv:1701.01075
  49. Creutz M JHEP 2008 (04) 017 (2008)
  50. Creutz M Ann. Physics 342 21 (2014)
  51. Nielsen H B, Ninomiya M Nucl. Phys. B 185 20 (1981); Nielsen H B, Ninomiya M Nucl. Phys. B 193 173 (1981)
  52. Soluyanov A A et al. Nature 527 495 (2015)
  53. Huhtala P, Volovik G E Zh. Eksp. Teor. Fiz. 121 995 (2002); Huhtala P, Volovik G E JETP 94 853 (2002); Huhtala P, Volovik G E gr-qc/0111055
  54. Li D et al. Phys. Rev. B 95 094513 (2017)
  55. Alidoust M, Halterman K, Zyuzin A A Phys. Rev. B 95 155124 (2017)
  56. Volovik G E Pis’ma ZhETF 104 660 (2016); Volovik G E JETP Lett. 104 645 (2016); Volovik G E arXiv:1610.00521
  57. Painlevé P C.R. Acad. Sci. 173 677 (1921); Gullstrand A Arkiv. Mat. Astron. Fys. 16 (8) 1 (1922)
  58. Unruh W G Phys. Rev. Lett. 46 1351 (1981)
  59. Unruh W G Phys. Rev. D 51 2827 (1995)
  60. Kraus P, Wilczek F Mod. Phys. Lett. A 9 3713 (1994)
  61. Nissinen J, Volovik G E Pis’ma ZhETF 105 442 (2017); Nissinen J, Volovik G E JETP Lett. 105 447 (2017); Nissinen J, Volovik G E arXiv:1702.04624
  62. Heikkil&asuml; T T, Volovik G E New J. Phys. 17 093019 (2015); Heikkilä T T, Volovik G E arXiv:1505.03277
  63. Autti S et al. Phys. Rev. Lett. 117 255301 (2016)
  64. Mikitik G P, Sharlai Yu V Phys. Rev. B 73 235112 (2006)
  65. Mikitik G P, Sharlai Yu V FNT 34 1012 (2008); Mikitik G P, Sharlai Yu V Low Temp. Phys. 34 794 (2008)
  66. Mikitik G P, Sharlai Yu V Phys. Rev. B 90 155122 (2014)
  67. Takane D et al. arXiv:1708.06874
  68. Hyart T, Heikkilä T T Phys. Rev. B 93 235147 (2016)
  69. So H Prog. Theor. Phys. 74 585 (1985)
  70. Ishikawa K, Matsuyama T Z. Phys. C 33 41 (1986)
  71. Ishikawa K, Matsuyama T Nucl. Phys. B 280 523 (1987)
  72. Haldane F D M Phys. Rev. Lett. 61 2015 (1988)
  73. Volovik G E Zh. Eksp. Teor. Fiz. 94 (9) 123 (1988); Volovik G E Sov. Phys. JETP 67 1804 (1988)
  74. Kourtis S et al. Phys. Rev. B 96 205117 (2017); Kourtis S et al. arXiv:1708.04244
  75. Rombouts S M A, Dukelsky J, Ortiz G Phys. Rev. B 82 224510 (2010)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions