Berezinskii—Kosterlitz—Thouless transition and two-dimensional melting
V.N. Ryzhov,
E.E. Tareyeva,
Yu.D. Fomin,
E.N. Tsiok Institute for High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse 14, Troitsk, Moscow, 108840, Russian Federation
The main aspects of the theory of phase transitions in two-dimensional degenerate systems (Berezinskii—Kosterlitz—Thouless, or BKT, transitions) are reviewed in detail, including the transition mechanism, the renormalization group as a tool for describing the transition, and how the transition scenario can possibly depend on the core energy of topological defects (in particular, in thin superconducting films). Various melting scenarios in two-dimensional systems are analyzed, and the current status of actual experiments and computer simulations in the field is examined. Whereas in three dimensions melting always occurs as a single first-order transition, in two dimensions, as shown by Halperin, Nelson and Young, melting via two continuous BKT transitions with an intermediate hexatic phase characterized by quasi-long range orientational order is possible. There is also a possibility, however, for a first-order phase transition to occur. Recently, one further melting scenario, different from that occurring in the Berezinskii—Kosterlitz—Thouless—Halperin—Nelson—Young (BKTHNY) theory, has been proposed, according to which a solid can melt in two stages — a continuous BKT type solid-hexatic transition and then a first order hexatic phase—isotropic liquid one. Particular attention is given to the melting scenario as a function of the potential shape and to the random pinning effect on two-dimensional melting. In particular, it is shown that random pinning can alter the melting scenario fundamentally in the case of a first-order transition. Also considered is the melting of systems with potentials having a negative curvature in the repulsion region — potentials that are successfully used in describing the anomalous properties of water in two dimensions.
Keywords: two-dimensional systems, Berezinskii—Kosterlitz—Thouless transition, superfluid films, superconducting films, XY model, two-dimensional crystals, topological defects, vortices, dislocations, disclinations, hexatic phase, two-dimensional melting, Berezinskii—Kosterlitz—Thouless—Halperin—Nelson—Young theory, first order transition PACS:02.70.Ns, 05.70.Ln, 64.10.+h, 64.60.Ej, 64.70.D− (all) DOI:10.3367/UFNe.2017.06.038161 URL: https://ufn.ru/en/articles/2017/9/a/ 000417704200001 2-s2.0-85040965639 2017PhyU...60..857R Citation: Ryzhov V N, Tareyeva E E, Fomin Yu D, Tsiok E N "Berezinskii—Kosterlitz—Thouless transition and two-dimensional melting" Phys. Usp.60 857–885 (2017)
Patashinskii A Z, Pokrovskii V L Fluktuatsionnaya Teoriya Fazovykh Perekhodov (M.: Nauka, 1982); Per. na angl. yaz. 1-go russk. izd., Patashinskii A Z, Pokrovskii V L Fluctuation Theory Of Phase Transitions (Oxford: Pergamon Press, 1979)
Bogolyubov N N "Kvazisrednie v zadachakh statisticheskoi mekhaniki" Sobranie Nauchnykh Trudov v 12-ti Tomakh Vol. 6 (M.: Nauka, 2006) p. 236; Per. na angl. yaz., Bogolubov N N (Jr.) "Quasi-averages in problems of statistical mechanics" Quantum Statistical Mechanics: Selected Works (Hackensack, NJ: World Scientific, 2015)
Berezinskii V L "Nizkotemperaturnye svoistva dvumernykh sistem s nepreryvnoi gruppoi simmetrii" Diss. ... kand. fiz.-mat. nauk (M.: Institut teoreticheskoi fiziki im. L.D. Landau, 1971); Berezinskii V L Nizkotemperaturnye Svoistva Dvumernykh Sistem s Nepreryvnoi Gruppoi Simmetrii (M.: Fizmatlit, 2007)
José J V (Ed.) 40 Years Of Berezinskii—Kosterlitz—Thouless Theory (Singapore: World Scientific, 2013)
Fetter A L, Hohenberg P C Superconductivity (Ed. R D Parks) (New York: M. Dekker, 1969) p. 817
Feynman R P, Hibbs A R Quantum Mechanics And Path Integrals (New York: McGraw-Hill, 1965)
Balescu R Equilibrium And Nonequilibrium Statistical Mechanics (New York: Wiley, 1975); Per. na russk. yaz., Balesku R Ravnovesnaya i Neravnovesnaya Statisticheskaya Mekhanika Vol. 1 (M.: Mir, 1978)
Strandburg K J (Ed.) Bond-Orientational Order In Condensed Matter Systems (New York: Springer-Verlag, 1992)
Landau L D Zh. Eksp. Teor. Fiz.7 19 (1937); Landau L D Phys. Z. Sowjetunion11 26 (1937)
Peierls R E Helv. Phys. Acta7 81 (1934)
Peierls R E Ann. Inst. Henri Poincará5 177 (1935)
Landau L D, Lifshits E M Statisticheskaya Fizika Vol. 1 (M.: Nauka, 1976); Per. na angl. yaz., Landau L D, Lifshitz E M Statistical Physics Vol. 1 (Oxford: Pergamon Press, 1980)
Brock J D Bond-Orientational Order In Condensed Matter Systems (Ed. K J Strandburg) (New York: Springer-Verlag, 1992) p. 1
Landau L D, Lifshits E M Teoriya Uprugosti (M.: Nauka, 1987); Per. na angl. yaz., Landau L D, Lifshitz E M Theory Of Elasticity (Oxford: Pergamon Press, 1986)