Issues

 / 

2017

 / 

September

  

Reviews of topical problems


Berezinskii—Kosterlitz—Thouless transition and two-dimensional melting

, , ,
Institute for High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse 14, Troitsk, Moscow, 108840, Russian Federation

The main aspects of the theory of phase transitions in two-dimensional degenerate systems (Berezinskii—Kosterlitz—Thouless, or BKT, transitions) are reviewed in detail, including the transition mechanism, the renormalization group as a tool for describing the transition, and how the transition scenario can possibly depend on the core energy of topological defects (in particular, in thin superconducting films). Various melting scenarios in two-dimensional systems are analyzed, and the current status of actual experiments and computer simulations in the field is examined. Whereas in three dimensions melting always occurs as a single first-order transition, in two dimensions, as shown by Halperin, Nelson and Young, melting via two continuous BKT transitions with an intermediate hexatic phase characterized by quasi-long range orientational order is possible. There is also a possibility, however, for a first-order phase transition to occur. Recently, one further melting scenario, different from that occurring in the Berezinskii—Kosterlitz—Thouless—Halperin—Nelson—Young (BKTHNY) theory, has been proposed, according to which a solid can melt in two stages — a continuous BKT type solid-hexatic transition and then a first order hexatic phase—isotropic liquid one. Particular attention is given to the melting scenario as a function of the potential shape and to the random pinning effect on two-dimensional melting. In particular, it is shown that random pinning can alter the melting scenario fundamentally in the case of a first-order transition. Also considered is the melting of systems with potentials having a negative curvature in the repulsion region — potentials that are successfully used in describing the anomalous properties of water in two dimensions.

Fulltext pdf (906 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.06.038161
Keywords: two-dimensional systems, Berezinskii—Kosterlitz—Thouless transition, superfluid films, superconducting films, XY model, two-dimensional crystals, topological defects, vortices, dislocations, disclinations, hexatic phase, two-dimensional melting, Berezinskii—Kosterlitz—Thouless—Halperin—Nelson—Young theory, first order transition
PACS: 02.70.Ns, 05.70.Ln, 64.10.+h, 64.60.Ej, 64.70.D− (all)
DOI: 10.3367/UFNe.2017.06.038161
URL: https://ufn.ru/en/articles/2017/9/a/
000417704200001
2-s2.0-85040965639
2017PhyU...60..857R
Citation: Ryzhov V N, Tareyeva E E, Fomin Yu D, Tsiok E N "Berezinskii—Kosterlitz—Thouless transition and two-dimensional melting" Phys. Usp. 60 857–885 (2017)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 15th, May 2017, revised: 23rd, June 2017, 29th, June 2017

Îðèãèíàë: Ðûæîâ Â Í, Òàðååâà Å Å, Ôîìèí Þ Ä, Öèîê Å Í «Ïåðåõîä Áåðåçèíñêîãî—Êîñòåðëèöà—Òàóëåñà è äâóìåðíîå ïëàâëåíèå» ÓÔÍ 187 921–951 (2017); DOI: 10.3367/UFNr.2017.06.038161

References (313) Cited by (85) ↓ Similar articles (20)

  1. Ryzhov V N, Tareyeva E E et al Phys. Part. Nuclei Lett. 22 (3) 501 (2025)
  2. Nikonov E G, Nazmitdinov R G, Glukhovtsev P I Phys. Part. Nuclei 56 (6) 1560 (2025)
  3. Fomin Yu D, Mikheyenkov A V et al The Journal of Chemical Physics 163 (22) (2025)
  4. Jayaram S, Lenger M et al Phys. Rev. Lett. 135 (12) (2025)
  5. Tsiok E N, Fomin Yu D et al Phys. Part. Nuclei Lett. 22 (3) 505 (2025)
  6. Licerán L M, Stoof H T C Phys. Rev. B 111 (24) (2025)
  7. Demishev S V Uspekhi Fizicheskikh Nauk 194 (01) 23 (2024) [Demishev S V Phys. Usp. 67 (01) 22 (2024)]
  8. Song Yu-F, Deng Y, He Yu-Ya Phys. Rev. B 109 (9) (2024)
  9. Ouyang J, Liao Yu et al Phys. Rev. Applied 22 (2) (2024)
  10. Lin Ch-W, Chung Ch-Ju et al Journal Of Alloys And Compounds 1008 176700 (2024)
  11. Tsiok E N, Bobkov S A et al Phys. Wave Phen. 32 (3) 171 (2024)
  12. Klumov B A Jetp Lett. 120 (9) 650 (2024)
  13. Fomin Yu D, Gaiduk E A et al Physica A: Statistical Mechanics And Its Applications 644 129841 (2024)
  14. Lin Ch-W, Chen I N et al Phys. Rev. B 108 (21) (2023)
  15. RYZHOV V N, Gayduk E A et al Žurnal èksperimentalʹnoj I Teoretičeskoj Fiziki 164 (1) 143 (2023) [Ryzhov V N, Gaiduk E A et al J. Exp. Theor. Phys. 137 (1) 125 (2023)]
  16. Guo Rui-xue, Li Jia-jian, Ai Bao-quan Physica A: Statistical Mechanics And Its Applications 623 128833 (2023)
  17. Song F-F, Zhang G-M Phys. Rev. B 107 (16) (2023)
  18. Maccari I, Pokharel B K et al Phys. Rev. B 107 (1) (2023)
  19. Popova A P, Popov I S et al Jetp Lett. 117 (12) 945 (2023)
  20. Savin A V, Kivshar Yu S The Journal of Chemical Physics 159 (21) (2023)
  21. Starikov S, Abbass A et al Acta Materialia 261 119399 (2023)
  22. Klumov B A Uspekhi Fizicheskikh Nauk 193 (03) 305 (2023) [Klumov B A Phys. Usp. 66 (03) 288 (2023)]
  23. Loburets’ Anatol³i, Za¿ka Sv³tlana GoS (26) 295 (2023)
  24. Lee Ja H, Kim J M Physica A: Statistical Mechanics And Its Applications 624 128979 (2023)
  25. Gaiduk E A, Fomin Yu D et al Phys. Wave Phen. 31 (3) 135 (2023)
  26. Kumar A, Mishra P Fluid Phase Equilibria 568 113726 (2023)
  27. Ryzhov V N, Gaiduk E A et al Phys. Part. Nuclei Lett. 20 (5) 1124 (2023)
  28. Tseng Yu-H, Jiang F-J Eur. Phys. J. Plus 138 (12) (2023)
  29. He Yu-Ya, Shi H, Zhang Sh Phys. Rev. Lett. 129 (7) (2022)
  30. Raychaudhuri P, Dutta S J. Phys.: Condens. Matter 34 (8) 083001 (2022)
  31. Klumov B A Jetp Lett. 115 (2) 108 (2022)
  32. Lee Ja H, Kim J M J. Stat. Mech. 2022 (2) 023206 (2022)
  33. Singh N, Sood A K, Ganapathy R Proc. Natl. Acad. Sci. U.S.A. 119 (32) (2022)
  34. Syrovatka R A, Lipaev A M et al Jetp Lett. 116 (12) 869 (2022)
  35. Klumov B A Jetp Lett. 116 (10) 703 (2022)
  36. Tsiok E N, Fomin Yu D et al The Journal of Chemical Physics 156 (11) (2022)
  37. Lima E O, Pereira P C N, Apolinario S W S Phys. Rev. E 106 (5) (2022)
  38. Gaiduk E A, Fomin Yu D et al Phys. Rev. E 106 (2) (2022)
  39. Loburets A T, Zayika S O Ukr. J. Phys. 67 (8) 619 (2022)
  40. Hou Zh, Wang J et al Chinese Phys. B 31 (12) 126401 (2022)
  41. Ankudinov V E, Galenko P K Jetp Lett. 115 (12) 728 (2022)
  42. Vasin M G Eur. Phys. J. Plus 137 (9) (2022)
  43. Ramírez G Ju P, Cinacchi G Phys. Rev. E 104 (5) (2021)
  44. Fomin Yu D Physica A: Statistical Mechanics And Its Applications 565 125519 (2021)
  45. Padilla L A, León-Islas A A et al The Journal of Chemical Physics 155 (21) (2021)
  46. Cardoso D S, Hernandes V F et al Physica A: Statistical Mechanics And Its Applications 566 125628 (2021)
  47. Khrapak S, Kryuchkov N P et al Phys. Rev. E 103 (5) (2021)
  48. Tsiok E N, Fomin Yu D et al Phys. Rev. E 103 (6) (2021)
  49. Khali Sh Sh, Chakraborty D, Chaudhuri D Soft Matter 17 (12) 3473 (2021)
  50. Altvater M A, Tilak N et al Applied Physics Letters 119 (12) (2021)
  51. Mambretti F, Martinelli M et al Phys. Rev. E 104 (4) (2021)
  52. Altvater M A, Tilak N et al Nano Lett. 21 (14) 6132 (2021)
  53. S M M, P O N T et al Journal of Applied Physics 127 (5) (2020)
  54. Smith T  S, Ming F et al Phys. Rev. Lett. 124 (9) (2020)
  55. Son L, Sidorov V, Rusakov G Eur. Phys. J. Spec. Top. 229 (2-3) 347 (2020)
  56. Khrapak S A Phys. Rev. Research 2 (1) (2020)
  57. Son L D, Rusakov G M Russ. Metall. 2020 (8) 841 (2020)
  58. Huang P, Schönenberger T et al Nat. Nanotechnol. 15 (9) 761 (2020)
  59. Ryzhov V N, Tareyeva E E et al Uspekhi Fizicheskikh Nauk 190 (05) 449 (2020) [Ryzhov V N, Tareyeva E E et al Phys.-Usp. 63 (5) 417 (2020)]
  60. Tsiok E N, Gaiduk E A et al Soft Matter 16 (16) 3962 (2020)
  61. Ryzhov V N, Gaiduk E A et al Phys. Part. Nuclei 51 (4) 786 (2020)
  62. Komarov K A, Yurchenko S O Soft Matter 16 (35) 8155 (2020)
  63. Tsiok E N, Fomin Yu D, Ryzhov V N Physica A: Statistical Mechanics And Its Applications 550 124521 (2020)
  64. Kryuchkov N P, Smallenburg F et al The Journal of Chemical Physics 150 (10) (2019)
  65. Fomin Yu D, Ryzhov V N, Tsiok E N J. Phys.: Condens. Matter 31 (31) 315103 (2019)
  66. Son L D Russ. Metall. 2019 (2) 182 (2019)
  67. Komarov K A, Yarkov A V, Yurchenko S O The Journal of Chemical Physics 151 (24) (2019)
  68. Kryuchkov N P, Mistryukova L A et al Sci Rep 9 (1) (2019)
  69. Couëdel L, Nosenko V et al Phys.-Usp. 62 (10) 1000 (2019)
  70. Kryuchkov N P, Brazhkin V V, Yurchenko S O J. Phys. Chem. Lett. 10 (15) 4470 (2019)
  71. Kagan M Yu, Turlapov A V Phys.-Usp. 62 (3) 215 (2019)
  72. Roy I, Dutta S et al Phys. Rev. Lett. 122 (4) (2019)
  73. Gaiduk E A, Fomin Yu D et al Molecular Physics 117 (20) 2910 (2019)
  74. Mistryukova L A, Kryuchkov N P et al J. Phys.: Conf. Ser. 1348 (1) 012097 (2019)
  75. Azizi I, Rabin Y The Journal of Chemical Physics 150 (13) (2019)
  76. Yakovlev E V, Chaudhuri M et al The Journal of Chemical Physics 151 (11) (2019)
  77. Fomin Yu D, Tsiok E N, Ryzhov V N Physica A: Statistical Mechanics And Its Applications 527 121401 (2019)
  78. Ryzhov V N, Tareyeva E E Theor Math Phys 200 (1) 1053 (2019)
  79. Khrapak S A, Kryuchkov N P et al The Journal of Chemical Physics 149 (13) (2018)
  80. Fomin Yu D, Gaiduk E A et al Molecular Physics 116 (21-22) 3258 (2018)
  81. Kryuchkov N P, Yurchenko S O et al Soft Matter 14 (11) 2152 (2018)
  82. Kryuchkov N P, Ivlev A V, Yurchenko S O Soft Matter 14 (47) 9720 (2018)
  83. Chepurnykh G K, Chernaya V A, Medvedovskaya O G Phys. Solid State 60 (9) 1712 (2018)
  84. Baeva E M, Sidorova M V et al Phys. Rev. Applied 10 (6) (2018)
  85. Digregorio P, Levis D et al Phys. Rev. Lett. 121 (9) (2018)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions