Issues

 / 

2017

 / 

May

  

Instruments and methods of investigation


Gas dynamic trap: experimental results and future prospects

 a, b,  a, c, b
a Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, prosp. akad. Lavrenteva 11, Novosibirsk, 630090, Russian Federation
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russian Federation
c Nuclear Safety Institute, Russian Academy of Sciences, ul. Bolshaya Tulskaya 52, Moscow, 115191, Russian Federation

The gas dynamic trap (GDT) is a magnetic mirror variety with a long mirror-to-mirror distance far exceeding the effective ion mean free path for scattering into the loss cone, with a large mirror ratio (R ∼ 100, R = Bmax/Bmin is the ratio of magnetic field values at the mirror and at the trap center), and with axial symmetry. Under these conditions, in contrast to the conventional magnetic mirror, the plasma confined in a GDT is isotropic Maxwellian. The plasma loss rate through the ends is governed by a set of simple gas-dynamic equations, hence the name of the device. The plasma lifetime in a GDT is of the order of LR/VTi, where L is the mirror-to-mirror distance and VTi is the ion thermal velocity. Thus, increasing both the mirror ratio and the length of the device can, in principle, make the plasma lifetime sufficient for fusion applications. This paper discusses plasma confinement and heating results from the Novosibirsk GDT facility and examines prospects for using the GDT to develop a high flux neutron source for fusion materials testing and for driving subcritical fission reactors.

Fulltext pdf (978 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2016.09.037967
Keywords: gas dynamic trap, fusion neutron source, magnetic mirror
PACS: 28.52.−s, 52.50.−b, 52.55.Jd (all)
DOI: 10.3367/UFNe.2016.09.037967
URL: https://ufn.ru/en/articles/2017/5/d/
000407895100004
2-s2.0-85026913799
2017PhyU...60..509I
Citation: Ivanov A A, Prikhodko V V "Gas dynamic trap: experimental results and future prospects" Phys. Usp. 60 509–533 (2017)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 4th, July 2016, revised: 20th, September 2016, 30th, September 2016

Îðèãèíàë: Èâàíîâ À À, Ïðèõîäüêî Â Â «Ãàçîäèíàìè÷åñêàÿ ëîâóøêà: ðåçóëüòàòû èññëåäîâàíèé è ïåðñïåêòèâû» ÓÔÍ 187 547–574 (2017); DOI: 10.3367/UFNr.2016.09.037967

References (130) Cited by (56) ↓ Similar articles (13)

  1. Chernoshtanov I S, Chernykh I G et al J. Plasma Phys. 90 (2) (2024)
  2. Pinzhenin E I, Maksimov B B Pribory I Tehnika èksperimenta (2) (2024)
  3. Pinzhenin E I, Maximov V V Instrum Exp Tech 67 240 (2024)
  4. Liziakin G D, Gavrikov A V et al Uspekhi Fizicheskikh Nauk 194 495 (2024)
  5. [Liziakin G D, Gavrikov A V et al Phys. Usp. 67 464 (2024)]
  6. Boronina M A, Chernoshtanov I S et al Lobachevskii J Math 45 1 (2024)
  7. Oh D, Choe M et al J. Plasma Phys. 90 (2) (2024)
  8. Shmigelsky E A, Lizunov A A et al J. Plasma Phys. 90 (2) (2024)
  9. Glinskiy V V, Timofeev I V, Berendeev E A Computer Physics Communications 304 109318 (2024)
  10. Skovorodin D I, Chernoshtanov I S et al Fizika Plazmy 49 831 (2023)
  11. Skovorodin D I, Chernoshtanov I S et al Plasma Phys. Rep. 49 1039 (2023)
  12. Francisquez M, Rosen M H et al 30 (10) (2023)
  13. Xiong H-H, Zeng Q-S et al NUCL SCI TECH 34 (4) (2023)
  14. Miller T, Be’ery I et al 30 (7) (2023)
  15. Nicks B S, Putvinski S, Tajima T 30 (10) (2023)
  16. Soldatkina E I, Pinzhenin E I et al Nucl. Fusion 62 066034 (2022)
  17. Egedal J, Endrizzi D et al Nucl. Fusion 62 126053 (2022)
  18. KOTELNIKOV Igor, LIZUNOV Andrej, ZENG Qiusun Plasma Sci. Technol. 24 015102 (2022)
  19. Khristo M S, Beklemishev A D Plasma Phys. Control. Fusion 64 095019 (2022)
  20. Puryga E A, Khilchenko A D et al Instrum Exp Tech 65 29 (2022)
  21. Postupaev V V, Batkin V I et al Nucl. Fusion 62 086003 (2022)
  22. Chernoshtanov I S Plasma Phys. Rep. 48 79 (2022)
  23. Shalashov A G, Gospodchikov E D et al Nucl. Fusion 62 124001 (2022)
  24. Annenkov V V, Arzhannikov A V et al Jour 17 118 (2022)
  25. Shalashov A G, Gospodchikov E D, Khusainov T A Plasma Phys. Rep. 48 1125 (2022)
  26. Astrelin V T, Soldatkina E I Plasma Phys. Rep. 48 1 (2022)
  27. Kuzmin E I, Shikhovtsev I V Plasma Phys. Rep. 47 526 (2021)
  28. Feng Zh, Yu G et al Nucl. Fusion 61 096021 (2021)
  29. Inzhevatkina A A, Burdakov A V et al Plasma Phys. Rep. 47 794 (2021)
  30. Wetherton B A, Le A et al 28 (4) (2021)
  31. Astrelin V T Russ Phys J 63 1728 (2021)
  32. Boronina M A, Chernykh I G et al J. Phys.: Conf. Ser. 1640 012014 (2020)
  33. Khusainov T A, Gospodchikov E D Plasma Phys. Rep. 46 992 (2020)
  34. Astrelin V, Soldatkina E et al 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE), (2020) p. 403
  35. Sudnikov A V, Beklemishev A D et al J. Plasma Phys. 86 (5) (2020)
  36. Boldyrev S, Forest C, Egedal Ja Proc. Natl. Acad. Sci. U.S.A. 117 9232 (2020)
  37. Prikhodko V V, Arzhannikov A V J. Phys.: Conf. Ser. 1647 012004 (2020)
  38. Bagryansky P A, Chen Z et al Nucl. Fusion 60 036005 (2020)
  39. Postupaev V V, Batkin V I et al Plasma Phys. Control. Fusion 62 025008 (2020)
  40. Kotelnikov I A, Ivanov A A et al Nucl. Fusion 60 016008 (2020)
  41. Prikhodko V V, Kotelnikov I A, Chernoshtanov I S J. Phys.: Conf. Ser. 1647 012005 (2020)
  42. Pinzhenin E I, Maximov V V, Chistokhin I B Instrum Exp Tech 62 185 (2019)
  43. SUDNIKOV Anton V, BEKLEMISHEV Aleksey D et al Plasma And Fusion Research 14 2402023 (2019)
  44. (APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 11th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’19) Vol. APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 11th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’19Hybrid model of the open plasma trapE. A.GenrikhM. A.BoroninaG. I.Dudnikova2164 (2019) p. 110003
  45. Frolova V P, Nikolaev A G et al Plasma Sources Sci. Technol. 28 075015 (2019)
  46. Bagryansky P A, Beklemishev A D, Postupaev V V J Fusion Energ 38 162 (2019)
  47. (SECOND INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE, SMART STRUCTURES AND APPLICATIONS: ICMSS-2019) Vol. SECOND INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE, SMART STRUCTURES AND APPLICATIONS: ICMSS-2019Modeling of transient processes during plasma heating in open magnetic trapA. A.BarinovD. E.Fedyunin2201 (2019) p. 020002
  48. (PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCES AND APPLICATIONS IN PLASMA PHYSICS (AAPP 2019)) Vol. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCES AND APPLICATIONS IN PLASMA PHYSICS (AAPP 2019)Review of recent advances and new ideas in development of the open magnetic trapsAntonSudnikovElenaSoldatkina2179 (2019) p. 020026
  49. IVANOV Alexandr, BAGRYANSKY Petr et al Plasma And Fusion Research 14 2402139 (2019)
  50. Dudnikova G I, Chernykh I G et al J. Phys.: Conf. Ser. 1336 012013 (2019)
  51. PINZHENIN Egor I, KHILCHENKO Aleksandr D et al Plasma And Fusion Research 14 2402025 (2019)
  52. Belchenko Yu I, Davydenko V I et al Uspekhi Fizicheskikh Nauk 188 595 (2018) [Belchenko Yu I, Davydenko V I et al Phys.-Usp. 61 531 (2018)]
  53. Burdakov A V, Postupaev V V Uspekhi Fizicheskikh Nauk 188 651 (2018) [Burdakov A V, Postupaev V V Phys.-Usp. 61 582 (2018)]
  54. Knaster J Nucl. Fusion 58 095001 (2018)
  55. Didenko A N, Vovchenko E D et al Phys. Atom. Nuclei 81 1627 (2018)
  56. Ivanov I A, Batkin V I et al 7 (12) (2017)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions