Dislocation kinetics in nonmagnetic crystals: a look through a magnetic window
V.I. Alshitsa,
E.V. Darinskayaa,
M.V. Koldaevaa,
R.K. Kotowskib,
E.A. Petrzhika,
P. Tronczykb aFederal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, Leninskii prosp 59, Moscow, 119333, Russian Federation bPolish-Japanese Academy of Information Technology, Koszykowa 86, Warsaw, 02-008, Poland
This paper discusses new kinematic magnetoplasticity features established experimentally and by simulations. It examines the motion of a dislocation through randomly distributed point defects under the influence of a magnetic field which reduces the impurity pinning forces. In addition to the measurable characteristics of motion, hidden motion parameters amenable only to simulation studies are investigated for the first time. It is shown that the distribution of stoppers on a dislocation is independent of the impurity concentration C, whereas the average number of the stoppers and the critical force for the dislocation breakaway are proportional to √C. A model is proposed which for the first time explains the observed concentration dependence of the average dislocation speed in a magnetic field, ν ∝ 1/√C. The model suggests that there is hidden room for orders of magnitude increase in ν, something which was already realized in NaCl crystals additionally subjected to a weak electric field.
Keywords: magnetoplastic effect, dislocation, impurity defect, pinning center, magnetic field, electric field, computer simulation PACS:07.05.Tp, 61.72.−y, 62.20.−x (all) DOI:10.3367/UFNe.2016.07.037869 URL: https://ufn.ru/en/articles/2017/3/e/ 000405323300005 2-s2.0-85021058879 2017PhyU...60..305A Citation: Alshits V I, Darinskaya E V, Koldaeva M V, Kotowski R K, Petrzhik E A, Tronczyk P "Dislocation kinetics in nonmagnetic crystals: a look through a magnetic window" Phys. Usp.60 305–318 (2017)