Methodological notes

Dislocation kinetics in nonmagnetic crystals: a look through a magnetic window

 a,  a,  a,  b,  a,  b
a Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, Leninskii prosp 59, Moscow, 119333, Russian Federation
b Polish-Japanese Academy of Information Technology, Koszykowa 86, Warsaw, 02-008, Poland

This paper discusses new kinematic magnetoplasticity features established experimentally and by simulations. It examines the motion of a dislocation through randomly distributed point defects under the influence of a magnetic field which reduces the impurity pinning forces. In addition to the measurable characteristics of motion, hidden motion parameters amenable only to simulation studies are investigated for the first time. It is shown that the distribution of stoppers on a dislocation is independent of the impurity concentration C, whereas the average number of the stoppers and the critical force for the dislocation breakaway are proportional to √C. A model is proposed which for the first time explains the observed concentration dependence of the average dislocation speed in a magnetic field, ν ∝ 1/√C. The model suggests that there is hidden room for orders of magnitude increase in ν, something which was already realized in NaCl crystals additionally subjected to a weak electric field.

Fulltext is available at IOP
Keywords: magnetoplastic effect, dislocation, impurity defect, pinning center, magnetic field, electric field, computer simulation
PACS: 07.05.Tp, 61.72.−y, 62.20.−x (all)
DOI: 10.3367/UFNe.2016.07.037869
Citation: Alshits V I, Darinskaya E V, Koldaeva M V, Kotowski R K, Petrzhik E A, Tronczyk P "Dislocation kinetics in nonmagnetic crystals: a look through a magnetic window" Phys. Usp. 60 305–318 (2017)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 20th, June 2016, 28th, July 2016

Оригинал: Альшиц В И, Даринская Е В, Колдаева М В, Котовский Р К, Петржик Е А, Трончик П «Физическая кинетика движения дислокаций в немагнитных кристаллах: взгляд через магнитное окно» УФН 187 327–341 (2017); DOI: 10.3367/UFNr.2016.07.037869

References (72) Cited by (13) Similar articles (13) ↓

  1. A.L. Buchachenko “Magnetoplasticity and the physics of earthquakes. Can a catastrophe be prevented?57 92–98 (2014)
  2. V.I. Alshits, V.N. Lyubimov “Acoustics and optics of absorptive crystals: a universal formalism for topological effects56 1021–1037 (2013)
  3. A.V. Guglielmi “Foreshocks and aftershocks of strong earthquakes in the light of catastrophe theory58 384–397 (2015)
  4. B.I. Sturman “Collision integral for elastic scattering of electrons and phonons27 881–884 (1984)
  5. V.Yu. Khomich, V.A. Shmakov “Mechanisms of direct laser nanostructuring of materials58 455–465 (2015)
  6. V.V. Brazhkin “Interparticle interaction in condensed media: some elements are ’more equal than others’52 369–376 (2009)
  7. V.I. Alshits, V.N. Lyubimov “Generalization of the Leontovich approximation for electromagnetic fields on a dielectric — metal interface52 815–820 (2009)
  8. V.I. Alshits, V.N. Lyubimov “Plasmon—polariton at the interface of uniaxial crystal and metal: real dispersion equation and its analysis”, accepted
  9. A.A. Abrashkin, E.N. Pelinovsky “On the relation between Stokes drift and the Gerstner wave61 307–312 (2018)
  10. V.I. Ritus “Lagrange equations of motion of particles and photons in the Schwarzschild field58 1118–1123 (2015)
  11. L.A. Maksimov, T.V. Khabarova “Properties of acoustic polarization vectors in crystals and the phonon Hall effect53 481–485 (2010)
  12. V.P. Makarov, A.A. Rukhadze “Force acting on a substance in an electromagnetic field52 937–943 (2009)
  13. S.I. Blinnikov, L.B. Okun, M.I. Vysotskii “Critical velocities c/sqrt{3} and c/sqrt{2} in the general theory of relativity46 1099–1103 (2003)

The list is formed automatically.

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions