Issues

 / 

2016

 / 

September

  

Conferences and symposia


Thermooptics of magnetoactive medium: Faraday isolators for high average power lasers


Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation

The Faraday isolator, one of the key high-power laser elements, provides optical isolation between the master oscillator and the power amplifier or between the laser and its target, for example, a gravitational wave detector interferometer. However, the absorbed radiation inevitably makes the magnetoactive medium heat up and leads to thermally induced polarization and phase distortions in the laser beam — self-action process which limits the use of Faraday isolators in high average power lasers. What is unique about a magnetoactive medium thermooptics is that parasitic thermal effects arise against the background of circular birefringence rather than in an isotropic medium. Also, even an insignificant polarization distortions of the radiation result in a worse isolation ratio, which is the key characteristic of the Faraday isolator. All possible laser beam distortions are analyzed for their deteriorating effect on the Faraday isolator parameters. The mechanisms responsible for and key physical parameters associated with different kinds of distortions are identified and discussed. Methods for compensating for and suppressing parasitic thermal effects are described in detail, the published experimental data are systematized, and directions for further research are discussed based on the results achieved.

Fulltext pdf (3.2 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2016.03.037829
Keywords: thermal effects in lasers, solid-state lasers with high average power, optical isolation, Faraday isolators
PACS: 42.60.−v, 42.79.−e, 85.70.Sq (all)
DOI: 10.3367/UFNe.2016.03.037829
URL: https://ufn.ru/en/articles/2016/9/g/
000391228000007
2-s2.0-85006158746
2016PhyU...59..886K
Citation: Khazanov E A "Thermooptics of magnetoactive medium: Faraday isolators for high average power lasers" Phys. Usp. 59 886–909 (2016)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 2nd, March 2016, 2nd, March 2016

Оригинал: Хазанов Е А «Термооптика магнитоактивной среды: изоляторы Фарадея для лазеров с высокой средней мощностью» УФН 186 975–1000 (2016); DOI: 10.3367/UFNr.2016.03.037829

References (208) Cited by (50) ↓ Similar articles (20)

  1. Snetkov I, Jiang X, Lin Zh Scripta Materialia 255 116354 (2025)
  2. Snetkov I, Jiang X, Lin Zh Laser Congress 2024 (ASSL, LAC, LS&C), (2024) p. JTu2A.14
  3. Snetkov I Appl. Phys. B 130 (5) (2024)
  4. Snetkov I 2024 International Conference Laser Optics (ICLO), (2024) p. 69
  5. Meyer J G, Zablah A et al Opt. Express 32 29227 (2024)
  6. Yang L, Wang X et al Opt. Express 32 4036 (2024)
  7. Zhang L, Starobor A V et al J Am Ceram Soc. 107 3653 (2024)
  8. Shcherbakov I A Uspekhi Fizicheskikh Nauk 194 1242 (2024)
  9. Vojna D, Karimov D N et al Optical Materials 142 114016 (2023)
  10. Nikolaev R E, Trifonov V A i dr Neorganičeskie Materialy 59 301 (2023)
  11. Snetkov I L, Blagin R D et al Optical Materials 143 114277 (2023)
  12. Starobor A, Mironov E et al Optical Materials 138 113740 (2023)
  13. Starobor A V, Mironov E A, Palashov O V Optik 295 171539 (2023)
  14. Zhang L, Hu D et al 12 873 (2023)
  15. Nikolaev R E, Trifonov V A et al Inorg Mater 59 291 (2023)
  16. Slezák O, Vojna D et al Opt. Lett. 48 3471 (2023)
  17. Mironov E A, Snetkov I L et al 122 (10) (2023)
  18. Mironov E A, Palashov O V J. Opt. Soc. Am. B 39 2037 (2022)
  19. Nautiyal V K, Singh P et al Indian J Phys 96 3941 (2022)
  20. Zhe Ch, Ling Zh et al Ceramics International 48 13200 (2022)
  21. Snetkov I, Li J Magnetochemistry 8 168 (2022)
  22. Ponosova A, Ruzhitskaya D et al PRX Quantum 3 (4) (2022)
  23. Snetkov I, Yakovlev A Opt. Lett. 47 1895 (2022)
  24. Snetkov I, Yakovlev A et al Opt. Lett. 46 3592 (2021)
  25. Wang M, Lu B, Li H Journal Of The European Ceramic Society 41 5258 (2021)
  26. Palashov O V, Starobor A V et al Materials 14 3944 (2021)
  27. Seleznev A V, Rodionov D A et al J. Phys.: Conf. Ser. 1730 012096 (2021)
  28. Nikolaev R E, Tarasenko M S et al J Struct Chem 62 230 (2021)
  29. Snetkov I, Starobor A et al Optical Materials 120 111466 (2021)
  30. Snetkov I L IEEE J. Quantum Electron. 57 1 (2021)
  31. Vojna D, Duda M et al Opt. Lett. 45 1683 (2020)
  32. Vojna D, Slezák O et al Materials 13 5324 (2020)
  33. Starobor A V, Mironov E A et al Optical Materials 99 109542 (2020)
  34. Vyatkin A G, Khazanov E A Quantum Electron. 50 114 (2020)
  35. Kruk A, Mrózek M Measurement 162 107912 (2020)
  36. Balodhi A, Chang K et al 128 (16) (2020)
  37. Seleznev A V, Shaidullin R I, Ryabushkin O A 2020 International Conference Laser Optics (ICLO), (2020) p. 1
  38. Seleznev A V, Ivanov G Y et al J. Phys.: Conf. Ser. 1391 012142 (2019)
  39. Ismagilova R, Shaidullin R, Ryabushkin O 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), (2019) p. 1
  40. Vojna D, Slezák O et al Applied Sciences 9 3160 (2019)
  41. Kruk A, Brylewski T, Mrózek M Journal Of Luminescence 209 333 (2019)
  42. Dolgov A D Phys.-Usp. 61 115 (2018)
  43. Snetkov I L IEEE J. Quantum Electron. 54 1 (2018)
  44. Bisnovatyi-Kogan G S, Moiseenko S G Uspekhi Fizicheskikh Nauk 906 (2017)
  45. Khazanov E A, Maslennikov O V et al Opt. Express 25 27968 (2017)
  46. Kruk A Ceramics International 43 16909 (2017)
  47. Mironov E A, Palashov O V IEEE J. Quantum Electron. 53 1 (2017)
  48. Rudenko V N Phys.-Usp. 60 830 (2017)
  49. Bisnovatyi-Kogan G S, Moiseenko S G Phys.-Usp. 60 843 (2017)
  50. Pustovoit V I Uspekhi Fizicheskikh Nauk 186 1133 (2016)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions