Issues

 / 

2016

 / 

September

  

Conferences and symposia


Thermooptics of magnetoactive medium: Faraday isolators for high average power lasers


Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation

The Faraday isolator, one of the key high-power laser elements, provides optical isolation between the master oscillator and the power amplifier or between the laser and its target, for example, a gravitational wave detector interferometer. However, the absorbed radiation inevitably makes the magnetoactive medium heat up and leads to thermally induced polarization and phase distortions in the laser beam — self-action process which limits the use of Faraday isolators in high average power lasers. What is unique about a magnetoactive medium thermooptics is that parasitic thermal effects arise against the background of circular birefringence rather than in an isotropic medium. Also, even an insignificant polarization distortions of the radiation result in a worse isolation ratio, which is the key characteristic of the Faraday isolator. All possible laser beam distortions are analyzed for their deteriorating effect on the Faraday isolator parameters. The mechanisms responsible for and key physical parameters associated with different kinds of distortions are identified and discussed. Methods for compensating for and suppressing parasitic thermal effects are described in detail, the published experimental data are systematized, and directions for further research are discussed based on the results achieved.

Fulltext pdf (3.2 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2016.03.037829
Keywords: thermal effects in lasers, solid-state lasers with high average power, optical isolation, Faraday isolators
PACS: 42.60.−v, 42.79.−e, 85.70.Sq (all)
DOI: 10.3367/UFNe.2016.03.037829
URL: https://ufn.ru/en/articles/2016/9/g/
000391228000007
2-s2.0-85006158746
2016PhyU...59..886K
Citation: Khazanov E A "Thermooptics of magnetoactive medium: Faraday isolators for high average power lasers" Phys. Usp. 59 886–909 (2016)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 2nd, March 2016, 2nd, March 2016

Оригинал: Хазанов Е А «Термооптика магнитоактивной среды: изоляторы Фарадея для лазеров с высокой средней мощностью» УФН 186 975–1000 (2016); DOI: 10.3367/UFNr.2016.03.037829

References (208) ↓ Cited by (42) Similar articles (20)

  1. Maiman T H Nature 187 493 (1960)
  2. Basov N G, Krokhin O N Zh. Eksp. Teor. Fiz. 46 171 (1964); Basov N G, Krokhin O N Sov. Phys. JETP 19 123 (1964)
  3. Gertsenshtein M E, Pustovoit V I Zh. Eksp. Teor. Fiz. 43 605 (1962); Gertsenshtein M E, Pustovoit V I Sov. Phys. JETP 16 433 (1963)
  4. Abbott B P et al. (LIGO Scientific Collab., Virgo Collab.) Phys. Rev. Lett. 116 061102 (2016)
  5. Quelle F W (Jr.) Appl. Opt. 5 633 (1966)
  6. Sims S D, Stein A, Roth C Appl. Opt. 6 579 (1967)
  7. Anan’ev Yu A i dr. Zhurn. Prikladnoi Spektroskopii 5 51 (1966); Anan’ev Yu A et al. J. Appl. Spectrosc. 5 36 (1966)
  8. Mezenov A V, Soms L N, Stepanov A I Termooptika Tverdotel’nykh Lazerov (L.: Mashinostroenie, 1986)
  9. Anan’ev Yu A, Grishmanova N I Zhurn. Prikladnoi Spektroskopii 12 668 (1970); Anan’ev Yu A, Grishmanova N I J.Appl. Spectrosc. 12 503 (1970)
  10. Mak A A, Mit’kin V M, Soms L N Optiko-mekhanicheskaya Promyshlennost’ 9 65 (1971)
  11. Vitrishchak I B, Soms L N, Tarasov A A Zh. Tekh. Fiz. 44 1055 (1974); Vitrishchak I B, Soms L N, Tarasov A A Sov. Phys. Tech. Phys. 19 664 (1974)
  12. Kertes I i dr. Zh. Eksp. Teor. Fiz. 59 1115 (1970); Kertes I et al. Sov. Phys. JETP 32 606 (1971)
  13. Foster J D, Osterink L M J. Appl. Phys. 41 3656 (1970)
  14. Massey G A Appl. Phys. Lett. 17 213 (1970)
  15. Koechner W Appl. Opt. 9 1429 (1970)
  16. Koechner W, Rice D K IEEE J. Quantum Electron. 6 557 (1970)
  17. Karr M A Appl. Opt. 10 893 (1971)
  18. Koechner W, Rice D K J. Opt. Soc. Am. 61 758 (1971)
  19. Soms L N, Tarasov A A, Shashkin V V Kvantovaya Elektronika 7 619 (1980); Soms L N, Tarasov A A, Shashkin V V Sov. J. Quantum Electron. 10 350 (1980)
  20. Soms L N, Tarasov A A Kvantovaya Elektronika 6 2546 (1979); Soms L N, Tarasov A A Sov. J. Quantum Electron. 9 1506 (1979)
  21. Scott W C, de Wit M Appl. Phys. Lett. 18 3 (1971)
  22. Giuliani G, Ristori P Opt. Commun. 35 109 (1980)
  23. Chen X, Gonzalez S Appl. Phys. B 67 611 (1998)
  24. Chen X, Chaux R Opt. Commun. 171 119 (1999)
  25. Dabby F W et al. Appl. Phys. Lett. 16 362 (1970)
  26. Chen X et al. Opt. Commun. 153 301 (1998)
  27. Klein C A Opt. Eng. 29 343 (1990)
  28. Klein C A Opt. Eng. 36 1586 (1997)
  29. Peng Y et al. Appl. Opt. 43 6465 (2004)
  30. Loze M K, Wright C D Appl. Opt. 37 6822 (1998)
  31. Shih O W J. Appl. Phys. 75 4382 (1994)
  32. Strain K A et al. Phys. Lett. A 194 124 (1994)
  33. Uehara N et al. Proc. SPIE 2989 57 (1997)
  34. Winkler W et al. Opt. Commun. 112 245 (1994)
  35. Khristov I P, Tomov I V, Saltiel S M Opt. Quantum Electron. 15 289 (1983)
  36. Eimerl D IEEE J. Quantum Electron. 23 2238 (1987)
  37. Hon D IEEE J. Quantum Electron. 12 148 (1976)
  38. Eimerl D IEEE J. Quantum Electron. 23 575 (1987)
  39. Horowitz M et al. Opt. Lett. 17 475 (1992)
  40. Andreev N, Khazanov E, Pasmanik G IEEE J. Quantum Electron. 28 330 (1992)
  41. Buzyalis R R, Dement’ev A S, Kosenko E K Optika Spektroskopiya 56 749 (1984); Buzyalis R R, Dementev A S, Kosenko E K Opt. Spectrosc. 56 458 (1984)
  42. Rayleigh Lord Philos. Trans. R. Soc. Lond. 176 343 (1885)
  43. Faraday M Philos. Trans. R. Soc. Lond. 136 1 (1846)
  44. Andreev N F, Palashov O V, Pasmanik G A, Khazanov E A Kvantovaya Elektronika 24 581 (1997); Andreev N F, Palashov O V, Pasmanik G A, Khazanov E A Quantum Electron. 27 565 (1997)
  45. Andreev N et al. IEEE J. Quantum Electron. 35 110 (1999)
  46. Khazanov E A et al. Proc. Conf. on Lasers and Electro-Optics (San Francisco, CA, 1998) p. 250
  47. Khazanov E A Kvantovaya Elektronika 26 59 (1999); Khazanov E A Quantum Electron. 29 59 (1999)
  48. Khazanov E A et al. IEEE J. Quantum Electron. 35 1116 (1999)
  49. Khazanov E et al. J. Opt. Soc. Am. B 17 99 (2000)
  50. Andreev N F i dr. Opticheskii Zhurn. 67 (6) 66 (2000); Andreev N F et al. J. Opt. Technol. 67 556 (2000)
  51. Khazanov E A Kvantovaya Elektronika 30 147 (2000); Khazanov E A Quantum Electron. 30 147 (2000)
  52. Andreev N F i dr. Kvantovaya Elektronika 30 1107 (2000); Andreev N F et al. Quantum Electron. 30 1107 (2000)
  53. Khazanov E A Kvantovaya Elektronika 31 351 (2001); Khazanov E A Quantum Electron. 31 351 (2001)
  54. Khazanov E et al. Appl. Opt. 41 483 (2002)
  55. Mueller G et al. Class. Quantum Grav. 19 1793 (2002)
  56. Khazanov E A et al. Appl. Opt. 41 2947 (2002)
  57. Andreev N F i dr. Kvantovaya Elektronika 32 91 (2002); Andreev N F et al. Quantum Electron. 32 91 (2002)
  58. Jones R C J. Opt. Soc. Am. 31 488 (1941)
  59. Tabor W J, Chen F S J. Appl. Phys. 40 2760 (1969)
  60. Vyatkin A G, Snetkov I L, Palashov O V, Khazanov E A Proc. CLEO/QELS 2013, San Jose, CA (2013), paper CTu1O.5
  61. Starobor A, Palashov O Opt. Commun. 354 103 (2015)
  62. Nicklaus K et al. Adv. Solid-State Photon. MB7 (2006)
  63. Voitovich A V i dr. Kvantovaya Elektronika 37 471 (2007); Voitovich A V et al. Quantum Electron. 37 471 (2007)
  64. Mukhin I B, Voitovich A V, Palashov O V, Khazanov E A Opt. Commun. 282 1969 (2009)
  65. Snetkov I L, Mukhin I B, Palashov O V, Khazanov E A Opt. Express 19 6366 (2011)
  66. Snetkov I L, Palashov O V Appl. Phys. B 109 239 (2012)
  67. Mironov E A i dr. Kvantovaya Elektronika 43 740 (2013); Mironov E A et al. Quantum Electron. 43 740 (2013)
  68. Snetkov I L, Voitovich A V, Palashov O V, Khazanov E A IEEE J. Quantum Electron. 50 434 (2014)
  69. Yasuhara R et al. Opt. Lett. 39 1145 (2014)
  70. Zheleznov D et al. Opt. Express 22 2578 (2014)
  71. Zheleznov D et al. Opt. Lett. 39 2183 (2014)
  72. Mironov E A, Palashov O V Opt. Express 22 23226 (2014)
  73. Nicklaus K, Langer T Proc. Of SPIE 7578 75781U (2010)
  74. Snetkov I L et al. Proc. CLEO/Europe-IQEC (2015)
  75. Martinelli M Opt. Commun. 72 341 (1989)
  76. Bhandari R Opt. Commun. 88 1 (1992)
  77. Gelikonov V M i dr. Pis’ma ZhTF 13 775 (1987); Gelikonov V M et al. Sov. Tech. Phys. Lett. 13 322 (1987)
  78. Kawashima T et al. Proc. SPIE 3889 596 (2000)
  79. Nakai S et al. Proc. SPIE 4065 29 (2000)
  80. Carr I D, Hanna D C Appl. Phys. B 36 83 (1985)
  81. Sherman J Appl. Opt. 37 7789 (1998)
  82. Ostermeyer M R et al. Appl. Opt. 41 7573 (2002)
  83. Moshe I, Jackel S Appl. Opt. 39 4313 (2000)
  84. Jackel S M, Kaufman A Opt. Eng. 33 3008 (1994)
  85. Denman C A, Libby S I Adv. Solid State Lasers 26 608 (1999)
  86. Gelikonov V M, Leonov V I, Novikov M A Kvantovaya Elektronika 16 1905 (1989); Gelikonov V M, Leonov V I, Novikov M A Quantum Electron. 19 1227 (1989)
  87. Yamashita S, Hotate K, Ito M J. Lightwave Technol. 14 385 (1996)
  88. Olsson N A Electron. Lett. 24 1075 (1988)
  89. Khazanov E Appl. Opt. 43 1907 (2004)
  90. Strehl K Z. Instrumentenkunde 22 213 (1902)
  91. Born M, Wolf E Principles Of Optics (Cambridge: Cambridge Univ. Press, 1999)
  92. Siegman A E Proc. SPIE 1224 2 (1990)
  93. Perevezentsev E, Poteomkin A, Khazanov E A Appl. Opt. 46 774 (2007)
  94. Vlasov S N, Petrishchev V A, Talanov V I Izv. Vuzov. Radiofizika 14 1353 (1971); Vlasov S N, Petrishchev V A,Talanov V I Radiophys. Quantum Electron. 1062 (1971)
  95. Potemkin A K, Khazanov E A Kvantovaya Elektronika 35 1042 (2005); Potemkin A K, Khazanov E A Quantum Electron. 35 1042 (2005)
  96. Zheleznyakov V V, Kocharovskii V V, Kocharovskii V V Usp. Fiz. Nauk 141 257 (1983); Zheleznyakov V V, Kocharovskii V V, Kocharovskii V V Sov. Phys. Usp. 26 877 (1983)
  97. Azzam R M A, Bashara N M Ellipsometry And Polarized Light (Amsterdam: North-Holland, 1977); Per. na russk. yaz., Azzam R, Bashara N Ellipsometriya i Polyarizovannyi Svet (M.: Mir, 1981)
  98. Khazanov E "Faraday isolators for high average power lasers" Advances In Solid State Lasers Development And Applications (Ed. M Grishin) (Rijeka: INTECH, 2010)
  99. Khazanov E A Opt. Lett. 27 716 (2002)
  100. Snetkov I L, Mukhin I B, Palashov O V, Khazanov E A Kvantovaya Elektronika 37 633 (2007); Snetkov I L, Mukhin I B, Palashov O V, Khazanov E A Quantum Electron. 37 633 (2007)
  101. Kagan M A, Khazanov E A Kvantovaya Elektronika 33 876 (2003); Kagan M A, Khazanov E A Quantum Electron. 33 876 (2003)
  102. Kagan M A, Khazanov E A Appl. Opt. 43 6030 (2004)
  103. Vyatkin A G, Khazanov A E J. Opt. Soc. Am. B 29 10 (2012)
  104. Snetkov I L et al. Opt. Express 21 21254 (2013)
  105. Shiraishi K, Tajima F, Kawakami S Opt. Lett. 11 82 (1986)
  106. Mironov E A et al. Opt. Lett. 40 2794 (2015)
  107. Palashov O V et al. J. Opt. Soc. Am. B 29 1784 (2012)
  108. Yasuhara R et al. Appl. Phys. Lett. 105 241104 (2014)
  109. Snetkov I, Palashov O Opt. Mater. 42 293 (2015)
  110. Snetkov I L et al. Opt. Express 22 4144 (2014)
  111. Palashov O V i dr. Kvantovaya Elektronika 41 858 (2011); Palashov O V et al. Quantum Electron. 41 858 (2011)
  112. Buhrer C F Opt. Lett. 14 1180 (1989)
  113. Mironov E A, Voitovich A V, Palashov O V Laser Phys. Lett. 13 035001 (2016)
  114. The VIRGO Collab. Appl. Opt. 47 5853 (2008)
  115. Katherin L D et al. Rev. Sci. Instrum. 83 033109 (2012)
  116. Mansell J D et al. App. Opt. 40 366 (2001)
  117. Khazanov E A et al. IEEE J. Quantum Electron. 40 1500 (2004)
  118. Zelenogorsky V, Palashov O, Khazanov E Opt. Commun. 278 8 (2007)
  119. Joiner R E, Marburger J, Steier W H Appl. Phys. Lett. 30 485 (1977)
  120. Snetkov I L, Vyatkin A G, Palashov O V, Khazanov E A Opt. Express 20 13357 (2012)
  121. Karimov D N i dr. Kristallogr. 59 788 (2014); Karimov D N et al. Crystallogr. Rep. 59 718 (2014)
  122. Zelmon D E et al. Appl. Opt. 55 834 (2016)
  123. Padula C F, Young C G IEEE J. Quantum Electron. 3 493 (1967)
  124. Zheleznov D C i dr. Kvantovaya Elektronika 36 383 (2006); Zheleznov D S et al. Quantum Electron. 36 383 (2006)
  125. Barnes N P, Petway L P J. Opt. Soc. Am. B 9 1912 (1992)
  126. Valiev U V i dr. Fiz. Tverd. Tela 24 2818 (1982); Valiev U V et al. Sov. Phys. Solid State 24 1596 (1982)
  127. Yasuhara R et al. Opt. Express 15 11255 (2007)
  128. Zheleznov D S, Starobor A V, Palashov O V, Khazanov E A J. Opt. Soc. Am. B 29 786 (2012)
  129. Starobor A V, Zheleznov D S, Palashov O V, Khazanov E A J. Opt. Soc. Am. B 28 1409 (2011)
  130. Slack G A, Oliver D W Phys. Rev. B 4 592 (1971)
  131. Rothhardt C et al. Proc. SPIE 8601 86010T (2014)
  132. Mironov E A et al. Appl. Opt. 53 3486 (2014)
  133. Mironov E A et al. Appl. Opt. 51 5073 (2012)
  134. Mironov E A, Voitovich A V, Palashov O V Opt. Commun. 295 170 (2013)
  135. Zheleznov D S i dr. Kvantovaya Elektronika 40 276 (2010); Zheleznov D S et al. Quantum Electron. 40 276 (2010)
  136. Zheleznov D S et al. IEEE J. Quantum Electron. 43 451 (2007)
  137. Starobor A V, Zheleznov D S, Palashov O V IEEE J. Quantum Electron. 48 1120 (2012)
  138. Robinson C C Appl. Opt. 3 1163 (1964)
  139. Weber M J Proc. SPIE 681 75 (1986)
  140. Johnston T F, Proffitt W IEEE J. Quantum Electron. 16 483 (1980)
  141. Mukhin I B, Palashov O V, Khazanov E A, Ivanov I A Pis’ma ZhETF 81 120 (2005); Mukhin I B, Palashov O V, Khazanov E A, Ivanov I A JETP Lett. 81 90 (2005)
  142. Vyatkin A G, Khazanov E A J. Opt. Soc. Am. B 28 6 (2011)
  143. Geho M, Sekijima T, Fujii T J. Cryst. Growth 267 188 (2004)
  144. Lin H, Zhou S, Teng H Opt. Mater. 33 1833 (2011)
  145. Ganschow et al. Proc. SPIE 3178 55 (1997)
  146. Valiev U V et al. J. Luminesc. 176 86 (2016)
  147. Pawlak D A et al. J. Cryst. Growth 226 341 (2001)
  148. Shimamura K, Villora E G Acta Phys. Polon. A 124 265 (2013)
  149. Villora E G et al. Appl. Phys. Lett. 99 011111 (2011)
  150. Shimamura K et al. Crystal Growth Design 10 3466 (2010)
  151. Furuse H et al. Opt. Mater. Express 6 191 (2015)
  152. Starobor A, Palashov O, Zhou S Opt. Lett. 41 1510 (2016)
  153. Chen Z et al. Mater. Lett. 145 171 (2015)
  154. Chen Z et al. Mater. Lett. 161 93 (2015)
  155. Wang X et al. J. Alloys Comp. 649 1085 (2015)
  156. Chen Z et al. Opt. Lett. 40 820 (2015)
  157. Guo F et al. Opt. Mater. 47 543 (2015)
  158. Guo F Y et al. J. Cryst. Growth 397 19 (2014)
  159. Kang J et al. Opt. Mater. 36 1266 (2014)
  160. Mei M et al. Adv. Mater. Res. 306-307 1722 (2011)
  161. Chen X et al. Opt. Mater. 37 188 (2014)
  162. Guo F et al. Opt. Mater. 35 227 (2012)
  163. Chen X et al. J. Cryst. Growth 421 8 (2015)
  164. Liu J et al. J. Cryst. Growth 310 2613 (2008)
  165. Veber P et al. CrystEngComm 17 492 (2015)
  166. Snetkov I L et al. Appl. Phys. Lett. 108 161905 (2016)
  167. Snetkov I L et al. IEEE J. Quantum Electron. 5 1 (2015)
  168. Mironov E A et al. Opt. Lett. 40 4919 (2015)
  169. Zheleznov D S, Starobor A V, Palashov O V Opt. Mater. 46 526 (2015)
  170. Kruk et al. Opt. Appl. 45 585 (2015)
  171. Vyatkin A G IEEE J. Quantum Electron. 50 1061 (2014)
  172. Vyatkin A G, Khazanov E A IEEE J. Quantum Electron. 51 1700108 (2015)
  173. Valiev U V et al. J. Appl. Phys. 104 073903 (2008)
  174. Zelenogorskii V V, Khazanov E A Kvantovaya Elektronika 40 40 (2010); Zelenogorskii V V, Khazanov E A Quantum Electron. 40 40 (2010)
  175. Avakyants L I i dr. Kvantovaya Elektronika 5 724 (1978); Avakyants L I et al. Quantum Electron. 8 423 (1978)
  176. Demskaya E L, Prokhorova T I Fizika Khimiya Stekla 9 554 (1983)
  177. Savinkov V I et al. J. Non-Cryst. Solids 356 1655 (2010)
  178. Starobor A V et al. Opt. Commun. 358 176 (2016)
  179. Jackson W B et al. Appl. Opt. 20 1333 (1981)
  180. Alexandrovski A et al. Proc. Of SPIE 7193 71930D (2009)
  181. Kuznetsov I et al. Opt. Mater. Express 4 2204 (2014)
  182. Sato Y, Taira T Opt. Express 14 10528 (2006)
  183. Morikawa J, Hashimoto T Jpn. J. Appl. Phys. 37 L1484 (1998)
  184. Gauthier D J, Narum P, Boyd R W Opt. Lett. 11 623 (1986)
  185. Geho M et al. Jpn. J. Appl. Phys. 44 4967 (2005)
  186. Birch K P Opt. Commun. 43 79 (1982)
  187. Trénec G et al. Appl. Opt. 50 4788 (2011)
  188. Kvantovaya Elektronika 43 740 (2013); Mironov E A et al. Quantum Electron. 43 740 (2013)
  189. Mironov E A, Voitovich A V, Palashov O V Kvantovaya Elektronika 41 71 (2011); Mironov E A, Voitovich A V, Palashov O V Quantum Electron. 41 71 (2011)
  190. Nicklaus K, Seyffert G US Patent US20120194906 A1 (2009)
  191. Mukhin I B, Khazanov E A Kvantovaya Elektronika 34 973 (2004); Mukhin I B, Khazanov E A Quantum Electron. 34 973 (2004)
  192. Zheleznov D S, Khazanov E A, Mukhin I B, Palashov O V Proc. SPIE 6610 66100F (2007)
  193. Mironov E A et al. Opt. Commun. 338 565 (2015)
  194. Zarubina T V, Petrovskii G T Opticheskii Zhurn. 59 (11) 48 (1992); Zarubina T V, Petrovsky G T J. Opt. Technol. 59 700 (1992)
  195. Zarubina T V i dr. Opticheskii Zhurn. 64 (11) 67 (1997); Zarubina T V et al. J. Opt. Technol. 64 1041 (1997)
  196. Chen X et al. Solid-State Electron. 42 1765 (1998)
  197. Jiang Y, Myers M J, Rhonenhouse D Proc. SPIE 1761 268 (1992)
  198. Kaminskii A A et al. Laser Phys. Lett. 2 489 (2005)
  199. Raja M Y A, Allen D, Sisk W Appl. Phys. Lett. 67 2123 (1995)
  200. Ivanov I et al. Proc. CLEO/EUROPE-EQEC 2009 (Munich, Germany, 2009), CE.P.12
  201. Chen X et al. Solid State Commun. 110 431 (1999)
  202. Yasuhara R, Furuse H Opt. Lett. 38 1751 (2013)
  203. Yasuhara R et al. Opt. Express 21 31443 (2013)
  204. Starobor A et al. Opt. Mater. 47 112 (2015)
  205. Starobor A V, Zheleznov D S, Palashov O V Laser Phys. 26 025801 (2016)
  206. Malshakov A N, Pasmanik G, Poteomkin A K Appl. Opt. 36 6403 (1997)
  207. Zarubina T V chastnoe soobshchenie (2000)
  208. Davis J A, Bunch R M Appl. Opt. 23 633 (1984)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions