Reviews of topical problems

Discrete breathers in crystals

 a, b,  b,  c, b,  d
a Tomsk State University, prosp. Lenina 36, Tomsk, 634050, Russian Federation
b Institute for Metals Superplasticity Problems of RAS, Khalturina st. 39, Ufa, 450001, Russian Federation
c Mikheev Institute of Metal Physics, Ural Division of the Russian Academy of Sciences, S Kovalevskoi str. 18, Ekaterinburg, 620108, Russian Federation
d Instituto Pluridisciplinar, Universidad Complutense, Paseo Juan XXIII, 1, Madrid, 28040, Spain

It is well known that periodic discrete defect-containing systems, in addition to traveling waves, support vibrational defect-localized modes. It turned out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Since the nodes of the system are all on equal footing, it is only through the special choice of initial conditions that a group of nodes can be found on which such a mode, called a discrete breather (DB), will be excited. The DB frequency must be outside the frequency range of the small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically conserve its vibrational energy forever provided no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery in them of DBs was only a matter of time. Experimental studies of DBs encounter major technical difficulties, leaving atomistic computer simulations as the primary investigation tool. Despite the definitive evidence for the existence of DBs in crystals, their role in solid state physics still remains unclear. This review addresses some of the problems that are specific to real crystal physics and which went undiscussed in the classical literature on DBs. In particular, the interaction of a moving DB with lattice defects is examined, how elastic lattice deformations influence the properties of DBs and the possibility of their existence is discussed, recent studies of the effect of nonlinear lattice perturbations on the crystal electron subsystem are presented, etc.

Fulltext is available at IOP
Keywords: crystal lattice, nonlinear oscillations, discrete breather, crystal lattice defect
PACS: 05.45.−a, 05.45.Yv, 63.20.−e (all)
DOI: 10.3367/UFNe.2016.02.037729
Citation: Dmitriev S V, Korznikova E A, Baimova J A, Velarde M G "Discrete breathers in crystals" Phys. Usp. 59 446–461 (2016)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 27th, July 2015, revised: 30th, January 2016, 9th, February 2016

Оригинал: Дмитриев С В, Корзникова Е А, Баимова Ю А, Веларде М Г «Дискретные бризеры в кристаллах» УФН 186 471–488 (2016); DOI: 10.3367/UFNr.2016.02.037729

References (241) Cited by (77) Similar articles (20) ↓

  1. R.I. Garber, A.I. Fedorenko “Focusing of atomic collisions in crystals7 479–507 (1965)
  2. L.A. Falkovsky “Investigation of semiconductors with defects using Raman scattering47 249–272 (2004)
  3. M.P. Kashchenko, V.G. Chashchina “Dynamic model of supersonic martensitic crystal growth54 331–349 (2011)
  4. A.A. Makarov, A.L. Malinovsky, E.A. Ryabov “Intramolecular vibrational redistribution: from high-resolution spectra to real-time dynamics55 977–1007 (2012)
  5. A.P. Zhernov, A.V. Inyushkin “Effect of isotopic composition on phonon modes. Static atomic displacements in crystals44 785–811 (2001)
  6. S.K. Turitsyn, N.N. Rozanov et alDissipative solitons in fiber lasers59 642–668 (2016)
  7. P.A. Alekseev “High borides: determining the features and details of lattice dynamics from neutron spectroscopy58 330–344 (2015)
  8. R.S. Berry, B.M. Smirnov “Modeling of configurational transitions in atomic systems56 973–998 (2013)
  9. M.A. Tsyganov, V.N. Biktashev et alWaves in systems with cross-diffusion as a new class of nonlinear waves50 263–286 (2007)
  10. V.K. Vanag “Waves and patterns in reaction-diffusion systems. Belousov-Zhabotinsky reaction in water-in-oil microemulsions47 923–941 (2004)
  11. G.L. Belen’kii, E.Yu. Salaev, R.A. Suleimanov “Deformation effects in layer crystals31 434–455 (1988)
  12. O.V. Maslennikov, V.I. Nekorkin “Adaptive dynamical networks60 694–704 (2017)
  13. P.A. Alekseev “Neutron spectroscopy and strongly correlated electrons: a view from the inside60 58–90 (2017)
  14. V.V. Klinshov, V.I. Nekorkin “Synchronization of delay-coupled oscillator networks56 1217–1229 (2013)
  15. V.I. Klyatskin “Integral characteristics: a key to understanding structure formation in stochastic dynamic systems54 441–464 (2011)
  16. S.P. Kuznetsov “Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics54 119–144 (2011)
  17. A. Loskutov “Fascination of chaos53 1257–1280 (2010)
  18. A.A. Koronovskii, O.I. Moskalenko, A.E. Hramov “On the use of chaotic synchronization for secure communication52 1213–1238 (2009)
  19. D.K. Belashchenko “Computer simulation of liquid metals56 1176–1216 (2013)
  20. D.K. Belashchenko “Does the embedded atom model have predictive power?63 (12) (2020)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions