Issues

 / 

2016

 / 

May

  

Reviews of topical problems


Discrete breathers in crystals

 a, b,  b,  c, b,  d
a Tomsk State University, prosp. Lenina 36, Tomsk, 634050, Russian Federation
b Institute for Metals Superplasticity Problems of RAS, Khalturina st. 39, Ufa, 450001, Russian Federation
c Mikheev Institute of Metal Physics, Ural Division of the Russian Academy of Sciences, S Kovalevskoi str. 18, Ekaterinburg, 620108, Russian Federation
d Instituto Pluridisciplinar, Universidad Complutense, Paseo Juan XXIII, 1, Madrid, 28040, Spain

It is well known that periodic discrete defect-containing systems, in addition to traveling waves, support vibrational defect-localized modes. It turned out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Since the nodes of the system are all on equal footing, it is only through the special choice of initial conditions that a group of nodes can be found on which such a mode, called a discrete breather (DB), will be excited. The DB frequency must be outside the frequency range of the small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically conserve its vibrational energy forever provided no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery in them of DBs was only a matter of time. Experimental studies of DBs encounter major technical difficulties, leaving atomistic computer simulations as the primary investigation tool. Despite the definitive evidence for the existence of DBs in crystals, their role in solid state physics still remains unclear. This review addresses some of the problems that are specific to real crystal physics and which went undiscussed in the classical literature on DBs. In particular, the interaction of a moving DB with lattice defects is examined, how elastic lattice deformations influence the properties of DBs and the possibility of their existence is discussed, recent studies of the effect of nonlinear lattice perturbations on the crystal electron subsystem are presented, etc.

Fulltext is available at IOP
Keywords: crystal lattice, nonlinear oscillations, discrete breather, crystal lattice defect
PACS: 05.45.−a, 05.45.Yv, 63.20.−e (all)
DOI: 10.3367/UFNe.2016.02.037729
URL: https://ufn.ru/en/articles/2016/5/b/
Citation: Dmitriev S V, Korznikova E A, Baimova J A, Velarde M G "Discrete breathers in crystals" Phys. Usp. 59 446–461 (2016)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 27th, July 2015, revised: 30th, January 2016, 9th, February 2016

:   ,   ,   ,    « » 186 471–488 (2016); DOI: 10.3367/UFNr.2016.02.037729

References (241) Cited by (61) ↓ Similar articles (20)

  1. Shepelev I A, Korznikova E A et al Physics Letters A 384 126032 (2020)
  2. Yi X, Liu Sh Nuclear Physics B 951 114884 (2020)
  3. Hadipour F, Saadatmand D et al Physics Letters A 384 126100 (2020)
  4. Krylova K A, Korznikova E A et al Eur. Phys. J. B 93 (2) (2020)
  5. Manley M E, Hellman O et al Nat Commun 10 (1) (2019)
  6. Bachurina O V Computational Materials Science 160 217 (2019)
  7. Zakharov P V, Lucenko I S et al J. Phys.: Conf. Ser. 1353 012061 (2019)
  8. Penati T, Koukouloyannis V et al Physica D: Nonlinear Phenomena 398 92 (2019)
  9. Bachurina O V, Murzaev R T, Bachurin D V J. Micromech. Mol. Phys. 04 1950001 (2019)
  10. Dubinko V, Laptev D et al Computational Materials Science 158 389 (2019)
  11. Shcherbinin S A, Semenova M N et al Phys. Solid State 61 2139 (2019)
  12. Zakharov P V, Cherednichenko A I et al J. Phys.: Conf. Ser. 1399 022002 (2019)
  13. Nikitiuk A S, Korznikova E A et al Math.Biol.Bioinf. 14 137 (2019)
  14. Krylova K A, Baimova J A et al Physics Letters A 383 1583 (2019)
  15. Zakharov P V, Korznikova E A et al Surface Science 679 1 (2019)
  16. Abdullina D U, Semenova M N et al Eur. Phys. J. B 92 (11) (2019)
  17. Korznikova E, Sunagatova I et al Lett. Mater. 9 386 (2019)
  18. Sun Zh-Yu, Yu X OSA Continuum 2 2630 (2019)
  19. Zakharov P V, Starostenkov M D et al Phys. Solid State 61 2160 (2019)
  20. Chetverikov A P, Ebeling W et al Phys. Rev. E 100 (5) (2019)
  21. Palmero F, English L Q et al Phys. Rev. E 99 (3) (2019)
  22. Chetverikov A P, Ebeling W et al Eur. Phys. J. B 92 (6) (2019)
  23. CuevasMaraver Jesús, Kevrekidis P G Nonlinear Systems And Complexity Vol. A Dynamical Perspective on the ɸ4 Model26 Chapter 7 (2019) p. 137
  24. Korznikova E A, Shcherbinin S A et al Phys. Status Solidi B 256 1800061 (2019)
  25. Bachurina O V Modelling Simul. Mater. Sci. Eng. 27 055001 (2019)
  26. Babicheva R I, Evazzade I et al Computational Materials Science 163 248 (2019)
  27. Lazarides N, Tsironis G P Physics Reports 752 1 (2018)
  28. Dmitriev S V, Baimova Ju A et al Nonlinear Systems, Vol. 2 Understanding Complex Systems Chapter 7 (2018) p. 175
  29. Saadatmand D, Xiong D et al Phys. Rev. E 97 (2) (2018)
  30. Evazzade I, Roknabadi M R et al Eur. Phys. J. B 91 (7) (2018)
  31. Watanabe Y, Nishida T et al Physics Letters A 382 1957 (2018)
  32. Bayazitov A M, Korznikova E A et al IOP Conf. Ser.: Mater. Sci. Eng. 447 012040 (2018)
  33. Abdullina D U, Semenova M N et al IOP Conf. Ser.: Mater. Sci. Eng. 447 012060 (2018)
  34. Dmitriev S V, Korznikova E A, Chetverikov A P J. Exp. Theor. Phys. 126 347 (2018)
  35. Chetverikov A P, Ebeling W et al Int. J. Dynam. Control 6 1376 (2018)
  36. Korznikova E A, Shepelev I A et al IOP Conf. Ser.: Mater. Sci. Eng. 447 012030 (2018)
  37. Bachurina O V, Murzaev R T et al Phys. Solid State 60 989 (2018)
  38. Bachurina O V, Murzaev R T et al IOP Conf. Ser.: Mater. Sci. Eng. 447 012033 (2018)
  39. Korznikova E A, Shepelev I A et al J. Exp. Theor. Phys. 127 1009 (2018)
  40. Moradi M A, Saadatmand D et al Phys. Rev. E 98 (2) (2018)
  41. Baimova J A, Murzaev R T, Rudskoy A I Physics Letters A 381 3049 (2017)
  42. Barani E, Korznikova E A et al Physics Letters A 381 3553 (2017)
  43. Savin A V, Kivshar Yu S Phys. Rev. B 96 (6) (2017)
  44. Zhang L W, Zhang Ya, Liew K M Applied Mathematical Modelling 49 691 (2017)
  45. Zakharov P V, Starostenkov M D et al Phys. Solid State 59 223 (2017)
  46. Zakharov P V, Starostenkov M D, Dmitriev S V Bull. Russ. Acad. Sci. Phys. 81 1322 (2017)
  47. Barani E, Lobzenko I P et al Eur. Phys. J. B 90 (3) (2017)
  48. Xiong D, Saadatmand D, Dmitriev S V Phys. Rev. E 96 (4) (2017)
  49. Chetverikov A P, Shepelev I A et al Computational Condensed Matter 13 59 (2017)
  50. Zakharov P V, Eremin A M et al 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics), (2017) p. 1
  51. Dmitriev S V NOLTA 8 85 (2017)
  52. Evazzade I, Lobzenko I P et al Phys. Rev. B 95 (3) (2017)
  53. Dmitriev S V, Medvedev N N et al Phys. Status Solidi RRL 11 1700298 (2017)
  54. Murzaev R T, Bachurin D V et al Physics Letters A 381 1003 (2017)
  55. Zakharov P V, Dmitriev S V et al J. Exp. Theor. Phys. 125 913 (2017)
  56. Korznikova E A, Bachurin D V et al Eur. Phys. J. B 90 (2) (2017)
  57. Dubinko V I, Mazmanishvili A S et al J. Micromech. Mol. Phys. 01 1650010 (2016)
  58. Zakharov P V, Korznikova E A et al 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics), (2016) p. 1
  59. Velarde M G Eur. Phys. J. Spec. Top. 225 921 (2016)
  60. Dmitriev S V, Korznikova E A et al Phys. Status Solidi B 253 1310 (2016)
  61. Velarde M G, Chetverikov A P et al Eur. Phys. J. B 89 (10) (2016)

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions