Issues

 / 

2016

 / 

November

  

On the 100th anniversary of the birth of V.L. Ginzburg. Physics of our days


Cooling and thermometry of atomic Fermi gases

 a, b
a Dipartimento di Fisica ‘Galileo Galilei’, Universita di Padova, via F. Marzolo 8, Padova, 35131, Italy
b Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, New Hampshire, USA

We review the status of cooling techniques aimed at achieving the deepest quantum degeneracy for atomic Fermi gases. We first discuss some physics motivations, providing a quantitative assessment of the need for deep quantum degeneracy in relevant physics cases, such as the search for unconventional superfluid states. The attention is then focused on the most widespread technique to reach deep quantum degeneracy for Fermi systems, sympathetic cooling of Bose—Fermi mixtures, organizing the discussion according to the specific species involved. Various proposals to circumvent some of the limitations to achieve deepest Fermi degeneracy, and their experimental realizations, are then reviewed. We finally discuss the extension of these techniques to optical lattices, and the implementation of precision thermometry crucial to understand the phase diagram of classical and quantum phase transitions in Fermi gases.

Fulltext pdf (735 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2016.07.037873
Keywords: ultracold Fermi gases, Fermi—Bose mixtures, superfluidity phenomena, atomic trapping, thermometry
PACS: 03.75.Ss, 05.30.Fk, 07.20.Dt, 37.10.De, 67.60.Bc (all)
DOI: 10.3367/UFNe.2016.07.037873
URL: https://ufn.ru/en/articles/2016/11/c/
000396002700003
2-s2.0-85012970207
2016PhyU...59.1129O
Citation: Onofrio R "Cooling and thermometry of atomic Fermi gases" Phys. Usp. 59 1129–1153 (2016)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 8th, June 2016, revised: 5th, July 2016, 6th, July 2016

Îðèãèíàë: Îíîôðèî Ð «Îõëàæäåíèå è òåðìîìåòðèÿ àòîìíûõ ôåðìè-ãàçîâ» ÓÔÍ 186 1229–1256 (2016); DOI: 10.3367/UFNr.2016.07.037873

References (232) Cited by (91) ↓

  1. Abiuso P, Andrea E P et al Quantum Sci. Technol. 9 035008 (2024)
  2. Turlapov A V Uspekhi Fizicheskikh Nauk 194 1326 (2024)
  3. Brattegard S, Mitchison M T Phys. Rev. A 109 (2) (2024)
  4. Myers N M Encyclopedia of Condensed Matter Physics (2024) p. 500
  5. Baroni C, Lamporesi G, Zaccanti M Nat Rev Phys 6 736 (2024)
  6. Mehdi Z, Haine S A et al Phys. Rev. Lett. 133 (7) (2024)
  7. Chien Ch-Ch, Mistakidis S I, Sadeghpour H R Phys. Rev. A 110 (5) (2024)
  8. Provorchenko D I, Tregubov D O et al Uspekhi Fizicheskikh Nauk 194 1185 (2024)
  9. Afanas’ev A E, Skakunenko P I et al Uspekhi Fizicheskikh Nauk 194 1146 (2024)
  10. Shen X, Davidson N et al Phys. Rev. Lett. 132 (3) (2024)
  11. Baturo B B, Vinogradov V A et al Žurnal èksperimentalʹnoj I Teoretičeskoj Fiziki 166 504 (2024)
  12. Zhang J, Chen A-X, Peng Z-A Acta Phys. Sin. 73 144202 (2024)
  13. Shen T, Barghathi H et al Phys. Rev. E 107 (5) (2023)
  14. Ullah A, Naseem M T, Müstecaplıoğlu Ö E Phys. Rev. Research 5 (4) (2023)
  15. Thomas K F, Ou Zh et al Phys. Rev. A 107 (3) (2023)
  16. Allman D G, Sabharwal P, Wright K C Phys. Rev. A 107 (4) (2023)
  17. Byju S, Lochan K, Shankaranarayanan S Phys. Rev. D 107 (10) (2023)
  18. Parajuli B, Chien Ch-Ch Phys. Rev. A 107 (6) (2023)
  19. Parajuli B, Pęcak D, Chien Ch-Ch Phys. Rev. A 107 (2) (2023)
  20. Luiz F S, Junior A de Oliveira et al Phys. Rev. A 105 (2) (2022)
  21. Nandy D K, Sowiński T Sci Rep 12 (1) (2022)
  22. Melezhik V S Phys. Part. Nuclei 53 795 (2022)
  23. Lopez A, Kelly P et al Eur. J. Phys. 43 065801 (2022)
  24. Khan M M, Mehboudi M et al Phys. Rev. Research 4 (2) (2022)
  25. Myers N M, Deffner S PRX Quantum 2 (4) (2021)
  26. Madeira L, Bagnato V S Braz J Phys 51 170 (2021)
  27. Manabe K, Ohashi Y Phys. Rev. A 103 (6) (2021)
  28. Hovhannisyan K V, Jørgensen M R et al PRX Quantum 2 (2) (2021)
  29. Zheng D-Ch, Ye Ch-R et al Phys. Rev. A 103 (2) (2021)
  30. Rubio Je, Anders Ja, Correa L A Phys. Rev. Lett. 127 (19) (2021)
  31. Guerrero-Suarez R, Mendoza-Arenas J J et al Phys. Rev. A 103 (2) (2021)
  32. Nandy D K, Sowiński T New J. Phys. 23 043019 (2021)
  33. Włodzyński D, Sowiński T Phys. Rev. A 104 (5) (2021)
  34. Deb A B, Kjærgaard N Science 374 972 (2021)
  35. Andreev P A, Antipin K V, Trukhanova M I Laser Phys. 31 015501 (2021)
  36. Riekki T S, Sebedash A P, Tuoriniemi J T J Low Temp Phys 199 1230 (2020)
  37. Asano Y, Watabe Sh, Nikuni T J Low Temp Phys 201 58 (2020)
  38. Wu Ch-H Phys. Scr. 95 055803 (2020)
  39. Barghathi H, Yu J, Del Maestro A Phys. Rev. Research 2 (4) (2020)
  40. Lizuain I, Tobalina A et al Entropy 22 350 (2020)
  41. Zhao Yu-L, Zhou Ch-Ch et al Physics Letters A 384 126791 (2020)
  42. Wu Ch-H Physica B: Condensed Matter 586 412127 (2020)
  43. Mitchison M T, Fogarty T et al Phys. Rev. Lett. 125 (8) (2020)
  44. Asano Y, Watabe Sh, Nikuni T Phys. Rev. A 101 (1) (2020)
  45. Vinogradov V A, Karpov K A et al Quantum Electron. 50 520 (2020)
  46. Sowiński T, Ángel G-M M Rep. Prog. Phys. 82 104401 (2019)
  47. Pâţu O I, Klümper A Phys. Rev. A 99 (1) (2019)
  48. Asano Y, Narushima M et al J Low Temp Phys 196 133 (2019)
  49. Peng L, Yu Y, Guan X-W Phys. Rev. B 100 (24) (2019)
  50. Kagan M Yu, Turlapov A V Phys.-Usp. 62 215 (2019)
  51. Qin R, Wang Y Phys. Rev. A 99 (1) (2019)
  52. Vitali E, Gonzalez J J Low Temp Phys 197 389 (2019)
  53. Nemirovskii S K Quantum Electron. 49 436 (2019)
  54. Jauffred F, Onofrio R, Sundaram B Phys. Rev. E 99 (2) (2019)
  55. Budewig L, Mistakidis S I, Schmelcher P Molecular Physics 117 2043 (2019)
  56. Pasek M, Orso G Phys. Rev. B 100 (24) (2019)
  57. Burovski E A, Ikhsanov R Sh et al J. Phys.: Conf. Ser. 1163 012046 (2019)
  58. Ferrari L Eur. Phys. J. Plus 134 (4) (2019)
  59. Turlapov A V (AIP Conference Proceedings) Vol. 2098 (2019) p. 020016
  60. Wang Z, He L Phys. Rev. A 99 (3) (2019)
  61. Mwalaba M, Sinayskiy I, Petruccione F Phys. Rev. A 99 (5) (2019)
  62. Makhalov V B, Turlapov A V Jetp Lett. 109 552 (2019)
  63. Vinogradov V A, Karpov K A et al Quantum Electron. 49 433 (2019)
  64. Guéry-Odelin D, Ruschhaupt A et al Rev. Mod. Phys. 91 (4) (2019)
  65. Kim T, Chien Ch-Ch Phys. Rev. A 97 (3) (2018)
  66. Grabsch A, Majumdar S et al SciPost Phys. 4 (3) (2018)
  67. Liu G, Zhang Y-C EPL 122 40006 (2018)
  68. Qin F Phys. Rev. A 98 (5) (2018)
  69. Matsyshyn O I, Yakimenko A I et al Phys. Rev. A 98 (4) (2018)
  70. Turlapov A V, Kagan M Yu J. Exp. Theor. Phys. 127 877 (2018)
  71. Cui X Phys. Rev. A 98 (2) (2018)
  72. Tajima H, Uchino Sh New J. Phys. 20 073048 (2018)
  73. Hui H-Y, Chen M et al Phys. Rev. A 98 (2) (2018)
  74. Aydin A, Sisman A Physics Letters A 382 1807 (2018)
  75. Wei X, Gao Ch et al Phys. Rev. A 98 (2) (2018)
  76. Deng Sh, Chenu A et al Sci. Adv. 4 (4) (2018)
  77. Kulkarni M, Mandal G, Morita T Phys. Rev. A 98 (4) (2018)
  78. Levy A, Kiely A et al New J. Phys. 20 025006 (2018)
  79. Wang L-L, Sun Q et al Phys. Rev. A 95 (5) (2017)
  80. Lous R S, Fritsche I et al Phys. Rev. A 95 (5) (2017)
  81. DeSalvo B  J, Patel K et al Phys. Rev. Lett. 119 (23) (2017)
  82. Pęcak D, Gajda M, Sowiński T Few-Body Syst 58 (6) (2017)
  83. Midtgaard J M, Wu Zh, Bruun G M Phys. Rev. A 96 (3) (2017)
  84. Goto Sh, Danshita I Phys. Rev. A 96 (6) (2017)
  85. Mulkerin B C, He L et al Phys. Rev. A 96 (5) (2017)
  86. Jauffred F, Onofrio R, Sundaram B J. Phys. B: At. Mol. Opt. Phys. 50 135005 (2017)
  87. Jauffred F, Onofrio R, Sundaram B Physics Letters A 381 2783 (2017)
  88. Dehkharghani A S, Bellotti F F, Zinner N T J. Phys. B: At. Mol. Opt. Phys. 50 144002 (2017)
  89. Turlapov A V, Yu K M J. Phys.: Condens. Matter 29 383004 (2017)
  90. Ufrecht Ch, Meister M et al New J. Phys. 19 085001 (2017)
  91. Cao L, Bolsinger V et al 147 (4) (2017)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions