Issues

 / 

2016

 / 

November

  

On the 100th anniversary of the birth of V.L. Ginzburg. Physics of our days


Cooling and thermometry of atomic Fermi gases

 a, b
a Dipartimento diFisica Galileo Galilei, Universita diPadova, via F. Marzolo 8, Padova, 35131, Italy
b Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, New Hampshire, USA

We review the status of cooling techniques aimed at achieving the deepest quantum degeneracy for atomic Fermi gases. We first discuss some physics motivations, providing a quantitative assessment of the need for deep quantum degeneracy in relevant physics cases, such as the search for unconventional superfluid states. The attention is then focused on the most widespread technique to reach deep quantum degeneracy for Fermi systems, sympathetic cooling of Bose—Fermi mixtures, organizing the discussion according to the specific species involved. Various proposals to circumvent some of the limitations to achieve deepest Fermi degeneracy, and their experimental realizations, are then reviewed. We finally discuss the extension of these techniques to optical lattices, and the implementation of precision thermometry crucial to understand the phase diagram of classical and quantum phase transitions in Fermi gases.

Fulltext is available at IOP
Keywords: ultracold Fermi gases, Fermi—Bose mixtures, superfluidity phenomena, atomic trapping, thermometry
PACS: 03.75.Ss, 05.30.Fk, 07.20.Dt, 37.10.De, 67.60.Bc (all)
DOI: 10.3367/UFNe.2016.07.037873
URL: https://ufn.ru/en/articles/2016/11/c/
Citation: Onofrio R "Cooling and thermometry of atomic Fermi gases" Phys. Usp. 59 1129–1153 (2016)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 8th, June 2016, revised: 5th, July 2016, 6th, July 2016

:   « -» 186 1229–1256 (2016); DOI: 10.3367/UFNr.2016.07.037873

References (232) Cited by (51) ↓

  1. Lizuain I, Tobalina A et al Entropy 22 350 (2020)
  2. Wu Ch-H Physica B: Condensed Matter 586 412127 (2020)
  3. Asano Y, Watabe Sh, Nikuni T Phys. Rev. A 101 (1) (2020)
  4. Mitchison M T, Fogarty T et al Phys. Rev. Lett. 125 (8) (2020)
  5. Wu Ch-H Phys. Scr. 95 055803 (2020)
  6. Riekki T S, Sebedash A P, Tuoriniemi J T J Low Temp Phys 199 1230 (2020)
  7. Zhao Yu-L, Zhou Ch-Ch et al Physics Letters A 384 126791 (2020)
  8. Asano Y, Watabe Sh, Nikuni T J Low Temp Phys (2020)
  9. Wang Z, He L Phys. Rev. A 99 (3) (2019)
  10. Mwalaba M, Sinayskiy I, Petruccione F Phys. Rev. A 99 (5) (2019)
  11. Ferrari L Eur. Phys. J. Plus 134 (4) (2019)
  12. Pasek M, Orso G Phys. Rev. B 100 (24) (2019)
  13. Jauffred F, Onofrio R, Sundaram B Phys. Rev. E 99 (2) (2019)
  14. Pâţu O I, Klümper A Phys. Rev. A 99 (1) (2019)
  15. Asano Y, Narushima M et al J Low Temp Phys 196 133 (2019)
  16. Peng L, Yu Y, Guan X-W Phys. Rev. B 100 (24) (2019)
  17. Qin R, Wang Y Phys. Rev. A 99 (1) (2019)
  18. Makhalov V B, Turlapov A V Jetp Lett. 109 552 (2019)
  19. Turlapov A V (AIP Conference Proceedings) Vol. 2098 (2019) p. 020016
  20. Sowiński T, Ángel G-M M Rep. Prog. Phys. 82 104401 (2019)
  21. Guéry-Odelin D, Ruschhaupt A et al Rev. Mod. Phys. 91 (4) (2019)
  22. Burovski E A, Ikhsanov R Sh et al J. Phys.: Conf. Ser. 1163 012046 (2019)
  23. Budewig L, Mistakidis S I, Schmelcher P Molecular Physics 117 2043 (2019)
  24. Vitali E, Gonzalez J J Low Temp Phys 197 389 (2019)
  25. Deng Sh, Chenu A et al Sci. Adv. 4 eaar5909 (2018)
  26. Tajima H, Uchino Sh New J. Phys. 20 073048 (2018)
  27. Liu G, Zhang Y-C EPL 122 40006 (2018)
  28. Hui H-Y, Chen M et al Phys. Rev. A 98 (2) (2018)
  29. Matsyshyn O I, Yakimenko A I et al Phys. Rev. A 98 (4) (2018)
  30. Wei X, Gao Ch et al Phys. Rev. A 98 (2) (2018)
  31. Aydin A, Sisman A Physics Letters A 382 1807 (2018)
  32. Grabsch A, Majumdar S et al SciPost Phys. 4 (3) (2018)
  33. Kulkarni M, Mandal G, Morita T Phys. Rev. A 98 (4) (2018)
  34. Levy A, Kiely A et al New J. Phys. 20 025006 (2018)
  35. Kim T, Chien Ch-Ch Phys. Rev. A 97 (3) (2018)
  36. Turlapov A V, Kagan M Yu J. Exp. Theor. Phys. 127 877 (2018)
  37. Qin F Phys. Rev. A 98 (5) (2018)
  38. Cui X Phys. Rev. A 98 (2) (2018)
  39. Jauffred F, Onofrio R, Sundaram B J. Phys. B: At. Mol. Opt. Phys. 50 135005 (2017)
  40. Midtgaard J M, Wu Zh, Bruun G M Phys. Rev. A 96 (3) (2017)
  41. Lous R S, Fritsche I et al Phys. Rev. A 95 (5) (2017)
  42. Jauffred F, Onofrio R, Sundaram B Physics Letters A 381 2783 (2017)
  43. Ufrecht Ch, Meister M et al New J. Phys. 19 085001 (2017)
  44. Turlapov A V, Yu K M J. Phys.: Condens. Matter 29 383004 (2017)
  45. Dehkharghani A S, Bellotti F F, Zinner N T J. Phys. B: At. Mol. Opt. Phys. 50 144002 (2017)
  46. Goto Sh, Danshita I Phys. Rev. A 96 (6) (2017)
  47. Cao L, Bolsinger V et al J. Chem. Phys. 147 044106 (2017)
  48. Mulkerin B C, He L et al Phys. Rev. A 96 (5) (2017)
  49. DeSalvo B  J, Patel K et al Phys. Rev. Lett. 119 (23) (2017)
  50. Pęcak D, Gajda M, Sowiński T Few-Body Syst 58 (6) (2017)
  51. Wang L-L, Sun Q et al Phys. Rev. A 95 (5) (2017)

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions