Issues

 / 

2016

 / 

November

  

On the 100th anniversary of the birth of V.L. Ginzburg. Physics of our days


Cooling and thermometry of atomic Fermi gases

 a, b
a Dipartimento di Fisica ‘Galileo Galilei’, Universita di Padova, via F. Marzolo 8, Padova, 35131, Italy
b Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, New Hampshire, USA

We review the status of cooling techniques aimed at achieving the deepest quantum degeneracy for atomic Fermi gases. We first discuss some physics motivations, providing a quantitative assessment of the need for deep quantum degeneracy in relevant physics cases, such as the search for unconventional superfluid states. The attention is then focused on the most widespread technique to reach deep quantum degeneracy for Fermi systems, sympathetic cooling of Bose—Fermi mixtures, organizing the discussion according to the specific species involved. Various proposals to circumvent some of the limitations to achieve deepest Fermi degeneracy, and their experimental realizations, are then reviewed. We finally discuss the extension of these techniques to optical lattices, and the implementation of precision thermometry crucial to understand the phase diagram of classical and quantum phase transitions in Fermi gases.

Fulltext pdf (735 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2016.07.037873
Keywords: ultracold Fermi gases, Fermi—Bose mixtures, superfluidity phenomena, atomic trapping, thermometry
PACS: 03.75.Ss, 05.30.Fk, 07.20.Dt, 37.10.De, 67.60.Bc (all)
DOI: 10.3367/UFNe.2016.07.037873
URL: https://ufn.ru/en/articles/2016/11/c/
000396002700003
2-s2.0-85012970207
2016PhyU...59.1129O
Citation: Onofrio R "Cooling and thermometry of atomic Fermi gases" Phys. Usp. 59 1129–1153 (2016)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 8th, June 2016, revised: 5th, July 2016, 6th, July 2016

Îðèãèíàë: Îíîôðèî Ð «Îõëàæäåíèå è òåðìîìåòðèÿ àòîìíûõ ôåðìè-ãàçîâ» ÓÔÍ 186 1229–1256 (2016); DOI: 10.3367/UFNr.2016.07.037873

References (232) Cited by (82) ↓

  1. Myers N M Encyclopedia of Condensed Matter Physics (2024) p. 500
  2. Shen X, Davidson N et al Phys. Rev. Lett. 132 (3) (2024)
  3. Brattegard S, Mitchison M T Phys. Rev. A 109 (2) (2024)
  4. Abiuso P, Andrea E P et al Quantum Sci. Technol. 9 035008 (2024)
  5. Allman D G, Sabharwal P, Wright K C Phys. Rev. A 107 (4) (2023)
  6. Ullah A, Naseem M T, Müstecaplıoğlu Ö E Phys. Rev. Research 5 (4) (2023)
  7. Thomas K F, Ou Zh et al Phys. Rev. A 107 (3) (2023)
  8. Shen T, Barghathi H et al Phys. Rev. E 107 (5) (2023)
  9. Parajuli B, Pęcak D, Chien Ch-Ch Phys. Rev. A 107 (2) (2023)
  10. Parajuli B, Chien Ch-Ch Phys. Rev. A 107 (6) (2023)
  11. Byju S, Lochan K, Shankaranarayanan S Phys. Rev. D 107 (10) (2023)
  12. Melezhik V S Phys. Part. Nuclei 53 795 (2022)
  13. Nandy D K, Sowiński T Sci Rep 12 (1) (2022)
  14. Luiz F S, Junior A de Oliveira et al Phys. Rev. A 105 (2) (2022)
  15. Lopez A, Kelly P et al Eur. J. Phys. 43 065801 (2022)
  16. Khan M M, Mehboudi M et al Phys. Rev. Research 4 (2) (2022)
  17. Guerrero-Suarez R, Mendoza-Arenas J J et al Phys. Rev. A 103 (2) (2021)
  18. Deb A B, Kjærgaard N Science 374 972 (2021)
  19. Myers N M, Deffner S PRX Quantum 2 (4) (2021)
  20. Madeira L, Bagnato V S Braz J Phys 51 170 (2021)
  21. Rubio Je, Anders Ja, Correa L A Phys. Rev. Lett. 127 (19) (2021)
  22. Manabe K, Ohashi Y Phys. Rev. A 103 (6) (2021)
  23. Andreev P A, Antipin K V, Trukhanova M I Laser Phys. 31 015501 (2021)
  24. Nandy D K, Sowiński T New J. Phys. 23 043019 (2021)
  25. Zheng D-Ch, Ye Ch-R et al Phys. Rev. A 103 (2) (2021)
  26. Włodzyński D, Sowiński T Phys. Rev. A 104 (5) (2021)
  27. Hovhannisyan K V, Jørgensen M R et al PRX Quantum 2 (2) (2021)
  28. Vinogradov V A, Karpov K A et al Quantum Electron. 50 520 (2020)
  29. Asano Y, Watabe Sh, Nikuni T Phys. Rev. A 101 (1) (2020)
  30. Riekki T S, Sebedash A P, Tuoriniemi J T J Low Temp Phys 199 1230 (2020)
  31. Lizuain I, Tobalina A et al Entropy 22 350 (2020)
  32. Wu Ch-H Phys. Scr. 95 055803 (2020)
  33. Zhao Yu-L, Zhou Ch-Ch et al Physics Letters A 384 126791 (2020)
  34. Mitchison M T, Fogarty T et al Phys. Rev. Lett. 125 (8) (2020)
  35. Asano Y, Watabe Sh, Nikuni T J Low Temp Phys 201 58 (2020)
  36. Wu Ch-H Physica B: Condensed Matter 586 412127 (2020)
  37. Barghathi H, Yu J, Del Maestro A Phys. Rev. Research 2 (4) (2020)
  38. Pâţu O I, Klümper A Phys. Rev. A 99 (1) (2019)
  39. Jauffred F, Onofrio R, Sundaram B Phys. Rev. E 99 (2) (2019)
  40. Mwalaba M, Sinayskiy I, Petruccione F Phys. Rev. A 99 (5) (2019)
  41. Budewig L, Mistakidis S I, Schmelcher P Molecular Physics 117 2043 (2019)
  42. Nemirovskii S K Quantum Electron. 49 436 (2019)
  43. Asano Y, Narushima M et al J Low Temp Phys 196 133 (2019)
  44. Peng L, Yu Y, Guan X-W Phys. Rev. B 100 (24) (2019)
  45. Vinogradov V A, Karpov K A et al Quantum Electron. 49 433 (2019)
  46. Qin R, Wang Y Phys. Rev. A 99 (1) (2019)
  47. Guéry-Odelin D, Ruschhaupt A et al Rev. Mod. Phys. 91 (4) (2019)
  48. Makhalov V B, Turlapov A V Jetp Lett. 109 552 (2019)
  49. Vitali E, Gonzalez J J Low Temp Phys 197 389 (2019)
  50. Pasek M, Orso G Phys. Rev. B 100 (24) (2019)
  51. Ferrari L Eur. Phys. J. Plus 134 (4) (2019)
  52. Sowiński T, Ángel G-M M Rep. Prog. Phys. 82 104401 (2019)
  53. Burovski E A, Ikhsanov R Sh et al J. Phys.: Conf. Ser. 1163 012046 (2019)
  54. Turlapov A V (AIP Conference Proceedings) Vol. 2098 (2019) p. 020016
  55. Wang Z, He L Phys. Rev. A 99 (3) (2019)
  56. Kulkarni M, Mandal G, Morita T Phys. Rev. A 98 (4) (2018)
  57. Matsyshyn O I, Yakimenko A I et al Phys. Rev. A 98 (4) (2018)
  58. Levy A, Kiely A et al New J. Phys. 20 025006 (2018)
  59. Turlapov A V, Kagan M Yu J. Exp. Theor. Phys. 127 877 (2018)
  60. Qin F Phys. Rev. A 98 (5) (2018)
  61. Grabsch A, Majumdar S et al SciPost Phys. 4 (3) (2018)
  62. Hui H-Y, Chen M et al Phys. Rev. A 98 (2) (2018)
  63. Liu G, Zhang Y-C EPL 122 40006 (2018)
  64. Deng Sh, Chenu A et al Sci. Adv. 4 (4) (2018)
  65. Cui X Phys. Rev. A 98 (2) (2018)
  66. Wei X, Gao Ch et al Phys. Rev. A 98 (2) (2018)
  67. Tajima H, Uchino Sh New J. Phys. 20 073048 (2018)
  68. Kim T, Chien Ch-Ch Phys. Rev. A 97 (3) (2018)
  69. Aydin A, Sisman A Physics Letters A 382 1807 (2018)
  70. Jauffred F, Onofrio R, Sundaram B Physics Letters A 381 2783 (2017)
  71. Cao L, Bolsinger V et al 147 (4) (2017)
  72. Wang L-L, Sun Q et al Phys. Rev. A 95 (5) (2017)
  73. Dehkharghani A S, Bellotti F F, Zinner N T J. Phys. B: At. Mol. Opt. Phys. 50 144002 (2017)
  74. Midtgaard J M, Wu Zh, Bruun G M Phys. Rev. A 96 (3) (2017)
  75. Jauffred F, Onofrio R, Sundaram B J. Phys. B: At. Mol. Opt. Phys. 50 135005 (2017)
  76. Mulkerin B C, He L et al Phys. Rev. A 96 (5) (2017)
  77. Lous R S, Fritsche I et al Phys. Rev. A 95 (5) (2017)
  78. Turlapov A V, Yu K M J. Phys.: Condens. Matter 29 383004 (2017)
  79. DeSalvo B  J, Patel K et al Phys. Rev. Lett. 119 (23) (2017)
  80. Ufrecht Ch, Meister M et al New J. Phys. 19 085001 (2017)
  81. Pęcak D, Gajda M, Sowiński T Few-Body Syst 58 (6) (2017)
  82. Goto Sh, Danshita I Phys. Rev. A 96 (6) (2017)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions