Reviews of topical problems

Electrical characteristics of carbon nanotube doped composites

 a,  b, c,  b, c,  d, e, f
a National Research University "Moscow Power Engineering Institute", Krasnokazarmennayast. 14, Moscow, 111250, Russian Federation
b Kintech Lab Ltd., ul. 3-ya Khoroshevskaya 12, Moscow, 123298, Russian Federation
c National Research Centre Kurchatov Institute, pl. akad. Kurchatova 1, Moscow, 123182, Russian Federation
d Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi prosp. 31, St. Petersburg, 199004, Russian Federation
e University of Perugia, Department of Civil and Environmental Engineering, Via G. Duranti 93, Perugia, 06125, Italy
f Institute of Polymer Science and Technology, ICTP-CSIC, Calle Juan de la Cierva 3, Madrid, 28006, Spain

This paper reviews research into the electrical characteristics that are imparted to composite materials by introducing carbon nanotubes (CNT) into their polymer matrices. Due to the large aspect ratio of CNTs, even a small amount of doping (at a level of 0.01—0.1%) is enough to increase the conductivity of the material by more than ten orders of magnitude, this changing it from an insulator to a conductor. At low doping, charge transfer is of percolation nature in the sense that nanotubes that are in contact with each other form conducting channels in the material. Importantly, the conductivity has a threshold nature, so that the conduction jump occurs at an arbitrarily small increase in doping above the critical value. This paper summarizes experimental data on the position of the percolation threshold and the maximum magnitude of the conductivity for composites obtained using various polymer types and various CNT geometries. Factors affecting the electrical characteristics of composites produced by various methods are analyzed. Methods for and basic results obtained from the simulation of the percolation conductivity of CNT doped composites are discussed. Particular attention is given to contact phenomena that occur at nanotube interfaces and which determine the conductivity of CNT doped composites.

Fulltext is available at IOP
Keywords: polymers, composites, carbon nanotubes, electrical properties
PACS: 72.80.Tm, 73.61.Ph, 73.63.Fg (all)
DOI: 10.3367/UFNe.0185.201503a.0225
Citation: Eletskii A V, Knizhnik A A, Potapkin B V, Kenny J M "Electrical characteristics of carbon nanotube doped composites" Phys. Usp. 58 209–251 (2015)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 10th, October 2014, revised: 8th, November 2014, 13th, November 2014

:   ,   ,   ,    « , » 185 225–270 (2015); DOI: 10.3367/UFNr.0185.201503a.0225

References (262) Cited by (57) Similar articles (20) ↓

  1. A.V. Eletskii “Mechanical properties of carbon nanostructures and related materials50 225–261 (2007)
  2. A.V. Eletskii “Transport properties of carbon nanotubes52 209–224 (2009)
  3. A.V. Eletskii “Carbon nanotube-based electron field emitters53 863–892 (2010)
  4. A.V. Eletskii “Carbon nanotubes40 899–924 (1997)
  5. A.V. Eletskii “Carbon nanotubes and their emission properties45 369–402 (2002)
  6. A.V. Eletskii, I.M. Iskandarova et alGraphene: fabrication methods and thermophysical properties54 227–258 (2011)
  7. G.V. Kozlov “Structure and properties of particulate-filled polymer nanocomposites58 33–60 (2015)
  8. A.V. Eletskii “Endohedral structures43 111–137 (2000)
  9. A.V. Eletskii “Sorption properties of carbon nanostructures47 1119–1154 (2004)
  10. V.N. Bezmel’nitsyn, A.V. Eletskii, M.V. Okun’ “Fullerenes in solutions41 1091–1114 (1998)
  11. A.V. Eletskii “Excimer lasers21 502–521 (1978)
  12. L.A. Golovan, V.Yu. Timoshenko, P.K. Kashkarov “Optical properties of porous-system-based nanocomposites50 595–612 (2007)
  13. B.I. Shklovskii, A.L. Éfros “Percolation theory and conductivity of strongly inhomogeneous media18 845–862 (1975)
  14. M.V. Kharlamova “Electronic properties of pristine and modified single-walled carbon nanotubes56 1047–1073 (2013)
  15. A.V. Eletskii, B.M. Smirnov “Fullerenes and carbon structures38 935–964 (1995)
  16. B.U. Barshchevskii “Exciton photochemistry of light-sensitive crystals44 397–414 (2001)
  17. G.N. Makarov “Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography56 643–682 (2013)
  18. G.N. Makarov “Laser IR fragmentation of molecular clusters: the role of channels for energy input and relaxation, influence of surroundings, dynamics of fragmentation60 227–258 (2017)
  19. L.A. Bol’shov, P.S. Kondratenko, L.V. Matveev “Nonclassical transport in highly heterogeneous and sharply contrasting media62 649–659 (2019)
  20. G.N. Makarov “Kinetic methods for measuring the temperature of clusters and nanoparticles in molecular beams54 351–370 (2011)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions