Issues

 / 

2015

 / 

March

  

Reviews of topical problems


Electrical characteristics of carbon nanotube doped composites

 a,  b, c,  b, c,  d, e, f
a National Research University "Moscow Power Engineering Institute", Krasnokazarmennaya st. 14, Moscow, 111250, Russian Federation
b Kintech Lab Ltd., ul. 3-ya Khoroshevskaya 12, Moscow, 123298, Russian Federation
c National Research Centre ‘Kurchatov Institute’, pl. akad. Kurchatova 1, Moscow, 123182, Russian Federation
d Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi prosp. 31, St. Petersburg, 199004, Russian Federation
e University of Perugia, Department of Civil and Environmental Engineering, Via G. Duranti 93, Perugia, 06125, Italy
f Institute of Polymer Science and Technology, ICTP-CSIC, Calle Juan de la Cierva 3, Madrid, 28006, Spain

This paper reviews research into the electrical characteristics that are imparted to composite materials by introducing carbon nanotubes (CNT) into their polymer matrices. Due to the large aspect ratio of CNTs, even a small amount of doping (at a level of 0.01—0.1%) is enough to increase the conductivity of the material by more than ten orders of magnitude, this changing it from an insulator to a conductor. At low doping, charge transfer is of percolation nature in the sense that nanotubes that are in contact with each other form conducting channels in the material. Importantly, the conductivity has a threshold nature, so that the conduction jump occurs at an arbitrarily small increase in doping above the critical value. This paper summarizes experimental data on the position of the percolation threshold and the maximum magnitude of the conductivity for composites obtained using various polymer types and various CNT geometries. Factors affecting the electrical characteristics of composites produced by various methods are analyzed. Methods for and basic results obtained from the simulation of the percolation conductivity of CNT doped composites are discussed. Particular attention is given to contact phenomena that occur at nanotube interfaces and which determine the conductivity of CNT doped composites.

Fulltext pdf (661 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0185.201503a.0225
Keywords: polymers, composites, carbon nanotubes, electrical properties
PACS: 72.80.Tm, 73.61.Ph, 73.63.Fg (all)
DOI: 10.3367/UFNe.0185.201503a.0225
URL: https://ufn.ru/en/articles/2015/3/a/
000356096100001
2015PhyU...58..209E
Citation: Eletskii A V, Knizhnik A A, Potapkin B V, Kenny J M "Electrical characteristics of carbon nanotube doped composites" Phys. Usp. 58 209–251 (2015)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 10th, October 2014, revised: 8th, November 2014, 13th, November 2014

Îðèãèíàë: Åëåöêèé À Â, Êíèæíèê À À, Ïîòàïêèí Á Â, Êåííè Õ Ì «Ýëåêòðè÷åñêèå õàðàêòåðèñòèêè ïîëèìåðíûõ êîìïîçèòîâ, ñîäåðæàùèõ óãëåðîäíûå íàíîòðóáêè» ÓÔÍ 185 225–270 (2015); DOI: 10.3367/UFNr.0185.201503a.0225

References (262) Cited by (89) ↓ Similar articles (20)

  1. Braga N B R, Oyama K et al J Nanopart Res 27 (5) (2025)
  2. Eletskii A V, Dao Kh L Uspekhi Fizicheskikh Nauk 195 (06) 635 (2025)
  3. Arnal T, Eisenberg P et al Macro Materials & Eng 310 (9) (2025)
  4. Chalin D V, Nazarov A D et al Phys. Rev. Materials 9 (7) (2025)
  5. Karpov I V, Fedorov L Yu, Drokin N A IEEE Trans. Dielect. Electr. Insul. 32 (5) 2615 (2025)
  6. Kravchenko S V, Tyukalov A V et al Russ Phys J (2025)
  7. Moyo R T, Tabakov P Ya, Moyo S Polymer Composites (2025)
  8. Singh D, Agrawal D et al Advcd Theory And Sims 8 (11) (2025)
  9. Moseenkov S I, Zavorin A V et al J Struct Chem 66 (1) 188 (2025)
  10. Luo L, Liang Yu et al Advanced Sustainable Systems (2025)
  11. Yan L, Zhou H et al J Mater Sci 60 (36) 16181 (2025)
  12. Bocharov G S, Eletskii A V et al Nano Carbons 2 (2) 1902 (2024)
  13. Shchegolkov A V, Shchegolkov A V et al Inorg. Mater. Appl. Res. 15 (5) 1499 (2024)
  14. Crites E, Hicks N et al CLEO 2024, (2024) p. JTu2A.7
  15. Zilberg R, Salikhov R et al Chim.Tech.Acta 11 (3) (2024)
  16. Poonia K, Singh P et al Chemosphere 352 141419 (2024)
  17. Babaev A A, Shchegolkov A V Prot Met Phys Chem Surf 59 (3) 371 (2023)
  18. Babaev A A, Zobov M E et al Inorg. Mater. Appl. Res. 14 (1) 236 (2023)
  19. do Amaral Ch S, dos Santos D C Physics Letters A 472 128817 (2023)
  20. Gisbert R F, Martínez-Ramos C et al ACS Appl. Polym. Mater. 5 (8) 6081 (2023)
  21. Bakhtiarian E, Foot Peter JS Polymers And Polymer Composites 31 (2023)
  22. Kuznetsov V A, Fedorov A A et al Žurnal Neorganičeskoj Himii 68 (2) 271 (2023)
  23. Babaev A A, Shchegol’kov A V Zaŝita Metallov 59 (3) 292 (2023)
  24. Kuznetsov V A, Fedorov A A et al Russ. J. Inorg. Chem. 68 (2) 221 (2023)
  25. Song J Y, Kim D Y et al Composites Science And Technology 227 109629 (2022)
  26. Ozkan S Zh, Kostev A I, Karpacheva G P Polym. Bull. 79 (6) 3721 (2022)
  27. Tonkov D N, Kobylyatskaya M I et al J. Phys.: Conf. Ser. 2227 (1) 012022 (2022)
  28. Babaev A A, Zobov M E, Saadueva A O Nanotechnol Russia 17 (4) 576 (2022)
  29. Nikonova I I, Shkodich V F et al Polym. Sci. Ser. D 14 (4) 471 (2021)
  30. Shchegolkov A V, Jang S-H et al Materials 14 (16) 4654 (2021)
  31. Bulavin L A, Alieksandrov M A et al Ukr. J. Phys. 66 (2) 151 (2021)
  32. Komarov F F, Parfimovich I D et al Tech. Phys. 66 (3) 461 (2021)
  33. Ivanov Yu V, Uryupin O N, Shabaldin A A Nanotechnol Russia 16 (3) 387 (2021)
  34. Larin S V, Lyulin S V et al Phys. Rev. Materials 5 (6) (2021)
  35. Ingle N, Sayyad P et al Appl. Phys. A 127 (2) (2021)
  36. Gusev K V, Solovyev V G Inorg. Mater. Appl. Res. 12 (1) 25 (2021)
  37. Funct.Mater. 28 (3) (2021)
  38. Ershov A P, Dashapilov G R et al Combust Explos Shock Waves 57 (1) 104 (2021)
  39. Tretjak M, Palaimiene E et al Polymers 13 (7) 997 (2021)
  40. Suslova E V, Epishev V V et al Russ. J. Phys. Chem. 95 (7) 1402 (2021)
  41. Babaev A A, Zobov M E et al J. Surf. Investig. 15 (6) 1353 (2021)
  42. Babaev A A, Saadueva A O et al Prot Met Phys Chem Surf 57 (3) 475 (2021)
  43. Babaev A A, Zobov M E et al Prot Met Phys Chem Surf 56 (4) 734 (2020)
  44. Karpov V G, Serpen G et al AIP Advances 10 (4) (2020)
  45. Moseenkov S I, Zavorin A V et al J Struct Chem 61 (4) 628 (2020)
  46. Gusev K V, Vanin A I et al Tech. Phys. Lett. 46 (6) 520 (2020)
  47. Markevich I A, Selyutin G E et al Tech. Phys. 65 (7) 1106 (2020)
  48. Satonkina N P, Ershov A P et al RSC Adv. 10 (30) 17620 (2020)
  49. Bocharov G S, Eletskii A V IJMS 21 (20) 7634 (2020)
  50. Morozova J V, Rezvan A A, Klimin V S J. Phys.: Conf. Ser. 1695 (1) 012027 (2020)
  51. Moseenkov S I, Kuznetsov V L et al Russ J Appl Chem 93 (4) 586 (2020)
  52. Likhomanova P A, Khromov K Yu J. Synch. Investig. 14 (5) 1057 (2020)
  53. Zhang P, Wang Bin-bin et al Synthetic Metals 261 116300 (2020)
  54. Gorokhov G, Bychanok D et al Polymers 12 (12) 3037 (2020)
  55. Klyuev I Yu, Shevchenko V G et al Inorg. Mater. Appl. Res. 11 (2) 416 (2020)
  56. Bocharov G S, Gerasimov D N et al J. Phys.: Conf. Ser. 1683 (3) 032011 (2020)
  57. Ingle N, Mane S et al Front. Mater. 7 (2020)
  58. Karpov V G, Serpen G, Patmiou M J. Phys. Complex. 1 (3) 035009 (2020)
  59. Bocharov G S, Eletskii A V Fullerenes, Nanotubes And Carbon Nanostructures 28 (2) 104 (2020)
  60. Ozkan S Zh, Karpacheva G P et al Polymers 11 (7) 1181 (2019)
  61. Markevich I A, Drokin N A, Selyutin G E Tech. Phys. 64 (9) 1324 (2019)
  62. Samuilov V, Galibert Je, Poklonski N Perspective of Carbon Nanotubes Chapter 9 (2019)
  63. Sukumaran S K, Kobayashi T et al J. Electrochem. Soc. 166 (9) B3091 (2019)
  64. Zhang J, Bokov A A et al Adv Eng Mater 20 (7) (2018)
  65. Goshev A A, Eseev M K, Kapustin S N J. Phys.: Conf. Ser. 1124 081022 (2018)
  66. Bocharov G S, Eletskii A V J Struct Chem 59 (4) 806 (2018)
  67. Huan Yu, Zhang X et al Nano Energy 50 62 (2018)
  68. Helseth L E Mater. Res. Express 5 (10) 105002 (2018)
  69. Han Ch-Ju, Chiang H-P, Cheng Yu-Ch Sensors 18 (2) 618 (2018)
  70. Dashapilov G R, Kashkarov A O et al J. Phys.: Conf. Ser. 1128 012099 (2018)
  71. Zhang J, Bokov A A et al Composites Science And Technology 164 160 (2018)
  72. Berezkin V I, Popov V V Phys. Solid State 60 (1) 207 (2018)
  73. Goshev A A, Eseev M K et al (AIP Conference Proceedings) Vol. 2015 (2018) p. 020027
  74. Pyrlin S V, Hine N D M et al Soft Matter 14 (7) 1181 (2018)
  75. Nanosist. Nanomater. Nanotehnol. 15 (2) 345 (2017)
  76. Andreev A S, Kazakova M A et al Carbon 114 39 (2017)
  77. Goshev A A, Eseev M K et al (AIP Conference Proceedings) Vol. 1885 (2017) p. 020009
  78. Malekie Sh, Ziaie F Journal of Polymer Engineering 37 (2) 205 (2017)
  79. Babaev A A, Aliev A M et al High Temp 55 (4) 502 (2017)
  80. Eletskii A V J. Phys.: Conf. Ser. 891 012368 (2017)
  81. Goshev A A, Eseev M K J. Phys.: Conf. Ser. 917 092013 (2017)
  82. Babaev A A, Aliev A M et al Bull. Russ. Acad. Sci. Phys. 81 (5) 623 (2017)
  83. Khromov K Yu, Knizhnik A A et al Journal of Applied Physics 121 (22) (2017)
  84. Eseev M K, Vinnik L N et al (AIP Conference Proceedings) Vol. 1767 (2016) p. 020026
  85. Goshev A A, Eseev M K et al J. Phys.: Conf. Ser. 741 012191 (2016)
  86. Bocharov G S, Eletskii A V, Knizhnik A A Tech. Phys. 61 (10) 1506 (2016)
  87. Babaev A A Bull. Russ. Acad. Sci. Phys. 80 (11) 1385 (2016)
  88. Osokin C S, Eseev M K et al J. Phys.: Conf. Ser. 769 012033 (2016)
  89. Goshev A A, Eseev M K et al J. Phys.: Conf. Ser. 643 012126 (2015)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions