Issues

 / 

2015

 / 

March

  

Reviews of topical problems


Electrical characteristics of carbon nanotube doped composites

 a,  b, c,  b, c,  d, e, f
a National Research University "Moscow Power Engineering Institute", Krasnokazarmennayast. 14, Moscow, 111250, Russian Federation
b Kintech Lab Ltd., ul. 3-ya Khoroshevskaya 12, Moscow, 123298, Russian Federation
c National Research Centre Kurchatov Institute, pl. akad. Kurchatova 1, Moscow, 123182, Russian Federation
d Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi prosp. 31, St. Petersburg, 199004, Russian Federation
e University of Perugia, Department of Civil and Environmental Engineering, Via G. Duranti 93, Perugia, 06125, Italy
f Institute of Polymer Science and Technology, ICTP-CSIC, Calle Juan de la Cierva 3, Madrid, 28006, Spain

This paper reviews research into the electrical characteristics that are imparted to composite materials by introducing carbon nanotubes (CNT) into their polymer matrices. Due to the large aspect ratio of CNTs, even a small amount of doping (at a level of 0.01—0.1%) is enough to increase the conductivity of the material by more than ten orders of magnitude, this changing it from an insulator to a conductor. At low doping, charge transfer is of percolation nature in the sense that nanotubes that are in contact with each other form conducting channels in the material. Importantly, the conductivity has a threshold nature, so that the conduction jump occurs at an arbitrarily small increase in doping above the critical value. This paper summarizes experimental data on the position of the percolation threshold and the maximum magnitude of the conductivity for composites obtained using various polymer types and various CNT geometries. Factors affecting the electrical characteristics of composites produced by various methods are analyzed. Methods for and basic results obtained from the simulation of the percolation conductivity of CNT doped composites are discussed. Particular attention is given to contact phenomena that occur at nanotube interfaces and which determine the conductivity of CNT doped composites.

Fulltext is available at IOP
Keywords: polymers, composites, carbon nanotubes, electrical properties
PACS: 72.80.Tm, 73.61.Ph, 73.63.Fg (all)
DOI: 10.3367/UFNe.0185.201503a.0225
URL: https://ufn.ru/en/articles/2015/3/a/
Citation: Eletskii A V, Knizhnik A A, Potapkin B V, Kenny J M "Electrical characteristics of carbon nanotube doped composites" Phys. Usp. 58 209–251 (2015)
BibTexBibNote ® (generic)BibNote ® (RIS) MedlineRefWorks
PT Journal Article
TI Electrical characteristics of carbon nanotube doped composites
AU Eletskii A V
FAU Eletskii AV
AU Knizhnik A A
FAU Knizhnik AA
AU Potapkin B V
FAU Potapkin BV
AU Kenny J M
FAU Kenny JM
DP 10 Mar, 2015
TA Phys. Usp.
VI 58
IP 3
PG 209-251
RX 10.3367/UFNe.0185.201503a.0225
URL https://ufn.ru/en/articles/2015/3/a/
SO Phys. Usp. 2015 Mar 10;58(3):209-251

Received: 10th, October 2014, revised: 8th, November 2014, 13th, November 2014

:   ,   ,   ,    « , » 185 225–270 (2015); DOI: 10.3367/UFNr.0185.201503a.0225

References (262) Cited by (57) Similar articles (20)

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions