Issues

 / 

2013

 / 

September

  

Methodological notes


The relativistic virial theorem and scale invariance


Instituto Universitario de Microgravedad ‘Ignacio Da Riva’ de la Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, Madrid, E-28040, Spain

The virial theorem is related to the dilatation properties of bound states, as seen in particular from the relativistic virial theorem formulated (by Landau and Lifshitz) in terms of the energy-momentum tensor trace. In the Hamiltonian formulation of dilatations we propose here, the relativistic virial theorem naturally arises as a stability condition against dilatations. A bound state becomes scale invariant in the ultrarelativistic limit, in which its energy vanishes. However, for very relativistic bound states, scale invariance is broken by quantum effects, necessitating including the energy-momentum tensor trace anomaly into the virial theorem. This quantum field theory virial theorem is directly related to the Callan — Symanzik equations. The virial theorem is applied to QED and then to QCD, focusing on the hadronic bag model. In massless QCD, 3/4 of the hadron mass corresponds to quarks and gluons and 1/4 to the trace anomaly, according to the virial theorem.

Fulltext pdf (596 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0183.201309f.0973
PACS: 03.30.+p, 11.10.St, 12.38.Aw, 12.39.Ba (all)
DOI: 10.3367/UFNe.0183.201309f.0973
URL: https://ufn.ru/en/articles/2013/9/e/
000328748500005
2-s2.0-84890510622
2013PhyU...56..919G
Citation: Gaite J "The relativistic virial theorem and scale invariance" Phys. Usp. 56 919–931 (2013)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 7th, February 2013, 27th, February 2013

Îðèãèíàë: Ãàèòå Õ «Ðåëÿòèâèñòñêàÿ òåîðåìà âèðèàëà è ìàñøòàáíàÿ èíâàðèàíòíîñòü» ÓÔÍ 183 973–986 (2013); DOI: 10.3367/UFNr.0183.201309f.0973

References (43) ↓ Cited by (7) Similar articles (20)

  1. Collins G W (II) The Virial Theorem In Stellar Astrophysics (Tucson, Ariz.: Pachart Publ. House, 1978)
  2. Landau L D, Lifshits E M Mekhanika (M.: Nauka, 1973); Landau L D, Lifshitz E M Mechanics (Oxford: Pergamon Press, 1976)
  3. Löwdin P-O J. Mol. Spectrosc. 3 46 (1959)
  4. Andersen C M, von Baeyer H C Am. J. Phys. 39 914 (1971)
  5. Kleban P Am. J. Phys. 47 883 (1979)
  6. van Kampen N G Rep. Math. Phys. 3 235 (1972)
  7. Nachtergaele B, Verbeure A J. Geom. Phys. 3 315 (1986)
  8. Bludman S, Kennedy D C J. Math. Phys. 52 042902 (2011)
  9. Landau L D, Lifshits E M Teoriya Polya (M.: Nauka, 1973); Landau L D, Lifshitz E M The Classical Theory Of Fields (Oxford: Pergamon Press, 1962)
  10. Rafelski J Phys. Rev. D 16 1890 (1977)
  11. Brack M Phys. Rev. D 27 1950 (1983)
  12. Dudas E A, Pirjol D Phys. Lett. B 260 186 (1991)
  13. Goldstein H Classical Mechanics (Cambridge, Mass.: Addison-Wesley Press, 1950) p. 214
  14. Jackson J D Classical Electrodynamics 3rd ed. (New York: Wiley, 1999)
  15. Anderson J L Principles Of Relativity Physics (New York: Academic Press, 1967)
  16. Barut A O Electrodynamics And Classical Theory Of Fields And Particles (New York: Dover Publ., 1980)
  17. Lucha W, Schöberl F F Phys. Rev. Lett. 64 2733 (1990)
  18. Hwang D S, Kim C S, Namgung W Phys. Lett. B 406 117 (1997)
  19. von Laue M Ann. Physik 35 524 (1911)
  20. Ohanian H C Stud. Hist. Philos. Sci. B 40 167 (2009)
  21. Hawking S W, Ellis G F R The Large Scale Structure Of Space-Time (Cambridge: Univ. Press, 1973)
  22. Bialynicki-Birula I Phys. Rev. D 28 2114 (1983)
  23. Fock V Z. Phys. 63 855 (1930)
  24. Rose M E, Welton T A Phys. Rev. 86 432 (1952)
  25. Wakano M Prog. Theor. Phys. 35 1117 (1966)
  26. Radford C J J. Phys. A Math. Phys. 36 5663 (2003)
  27. Weinberg S The Quantum Theory Of Fields Vol. 1 (Cambridge: Cambridge Univ. Press, 1995)
  28. Hobart R H Proc. Phys. Soc. 82 201 (1963)
  29. Derrick G H J. Math. Phys. 5 1252 (1964)
  30. Coleman S Aspects Of Symmetry (Cambridge: Cambridge Univ. Press, 1985)
  31. Callan C G (Jr.), Coleman S, Jackiw R Ann. Phys. 59 42 (1970)
  32. Herbst I W Commun. Math. Phys. 53 285 (1977); Herbst I W Commun. Math. Phys. 55 316 (1980), addendum
  33. Greiner W, Reinhardt J Quantum Electrodynamics (Berlin: Springer, 2003)
  34. Finger J, Horn D, Mandula J E Phys. Rev. D 20 3253 (1979)
  35. Ball J A, Wheeler J A, Firemen E L Rev. Mod. Phys. 45 333 (1973)
  36. Milonni P W The Quantum Vacuum: An Introduction To Quantum Electrodynamics (Boston: Academic Press, 1994)
  37. Ossola G, Sirlin A Eur. Phys. J. C 31 165 (2003)
  38. Adler S L, Collins J C, Duncan A Phys. Rev. D 15 1712 (1977)
  39. Zamolodchikov A B Pis’ma ZhETF 43 565 (1986); Zamolodchikov A B JETP Lett. 43 730 (1986)
  40. Zamolodchikov A B Yad. Fiz. 46 1819 (1987); Zamolodchikov A B Sov. J. Nucl. Phys. 46 1090 (1987)
  41. Osborn H Nucl. Phys. B 363 486 (1991)
  42. Chodos A et al. Phys. Rev. D 9 3471 (1974)
  43. Greiner W, Schramm S, Stein E Quantum Chromodynamics (Berlin: Springer, 2002)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions