Issues

 / 

2013

 / 

October

  

From the current literature


Transport mechanisms of electrons and holes in dielectric films

 a,  b
a Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences, prosp. akad. Koptyuga 1, Novosibirsk, 630090, Russian Federation
b Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, prosp. Lavrent'eva 13, Novosibirsk, 630090, Russian Federation

Electron and hole transport mechanisms in amorphous silicon oxide, silicon nitride and aluminum oxide, dielectric materials of high relevance to silicon device technology, are reviewed. It is established that the widely accepted Frenkel model provides a formal description of transport in trap-containing insulators, but to obtain quantitative agreement, nonphysical model parameters should be introduced. It is shown that the multiphonon ionization of traps is a good model to consistently describe charge transport in insulators with traps.

Fulltext pdf (740 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0183.201310h.1099
PACS: 72.20.Ht, 72.20.Jv, 72.80.Sk, 73.40.Sx (all)
DOI: 10.3367/UFNe.0183.201310h.1099
URL: https://ufn.ru/en/articles/2013/10/c/
000329313100003
2013PhyU...56..999N
Citation: Nasyrov K A, Gritsenko V A "Transport mechanisms of electrons and holes in dielectric films" Phys. Usp. 56 999–1012 (2013)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 4th, March 2013, 11th, June 2013

Оригинал: Насыров К А, Гриценко В А «Механизмы переноса электронов и дырок в диэлектрических плёнках» УФН 183 1099–1114 (2013); DOI: 10.3367/UFNr.0183.201310h.1099

References (80) Cited by (60) ↓ Similar articles (3)

  1. Ren L, Guo K et al ACS Sustainable Chem. Eng. 12 16468 (2024)
  2. Odintsov D S, Gismatulin A A et al ChemPhysChem 25 (21) (2024)
  3. Romanov I, Parkhomenko I et al Results In Optics 17 100750 (2024)
  4. Zykov V M, Neyman D A Tech. Phys. 69 1857 (2024)
  5. Sun H, Wang Yu et al ACS Appl. Mater. Interfaces 16 12821 (2024)
  6. Gismatulin A A, Odintsov D S et al Chemical Physics Letters 840 141140 (2024)
  7. Zhou Zh, Liu Y et al Scripta Materialia 243 115968 (2024)
  8. Huang R, Wang J et al Advanced Materials 36 (35) (2024)
  9. Huang R, Wang H et al ACS Appl. Electron. Mater. 6 1365 (2024)
  10. Dybov V A, Kalinin Yu E et al Tech. Phys. 69 526 (2024)
  11. Bhat Z, Ahsan Sh A IEEE Trans. Electron Devices 71 1812 (2024)
  12. Perevalov T V, Islamov D R et al 124 (4) (2024)
  13. Permyakov D, Strogonov A Electronics: STB Russia 228 184 (2023)
  14. Vedeneev A S, Rylkov V V et al J. Commun. Technol. Electron. 68 920 (2023)
  15. Yang M, Wang Sh et al Advanced Materials 35 (30) (2023)
  16. Koryazhkina M N, Filatov D O et al Nanomaterials 13 2082 (2023)
  17. Kang S S, Yang J et al 122 (4) (2023)
  18. Vedeneev A S, Rylkov V V et al Radiotehnika I èlektronika 68 827 (2023)
  19. Gabriel’s K S, Kalinin Yu E et al Tech. Phys. 68 S430 (2023)
  20. Lin Ya, Li F, Li Zh Rare Met. 42 2545 (2023)
  21. Liu K, Wang R et al Semicond. Sci. Technol. 37 075005 (2022)
  22. Odintsov D S, Shundrina I K et al J Struct Chem 63 1811 (2022)
  23. Iskhakzay R M Kh, Kruchinin V N et al Russ Microelectron 51 24 (2022)
  24. Rusinowicz M, Volpi F et al Adv Funct Materials 32 (47) (2022)
  25. Zalyalov T M, Islamov D R 2022 IEEE 23rd International Conference of Young Professionals in Electron Devices and Materials (EDM), (2022) p. 48
  26. Makeev V V, Teplov G S, Sattarov P Sh Elektronnaya Tekhnika. Seriya 3. Mikroelektronika (4) 34 (2022)
  27. Perevalov T V, Gismatulin A A et al Physica Status Solidi (a) 218 (4) (2021)
  28. Nikolaev S N, Vedeneev A S et al J. Commun. Technol. Electron. 66 1196 (2021)
  29. Şahin M F, Taşcı E et al Physica B: Condensed Matter 614 413029 (2021)
  30. Gritsenko V A, Gismatulin A A, Orlov O M Nanotechnol Russia 16 722 (2021)
  31. González Y, Hadj Y A et al 119 (13) (2021)
  32. Perevalov T V, Gismatulin A A et al 127 (19) (2020)
  33. Gritsenko V A, Gismatulin A A 117 (14) (2020)
  34. Voronkovskii V A, Perevalov T V et al Journal Of Non-Crystalline Solids 546 120256 (2020)
  35. Gismatulin A A, Gritsenko V A et al 115 (25) (2019)
  36. Masin F, Meneghini M et al 115 (5) (2019)
  37. 425 (2019)
  38. Yakunin A N, Aban’shin N P et al J. Commun. Technol. Electron. 64 83 (2019)
  39. Gritsenko V A, Novikov Yu N, Chin A Mater. Res. Express 6 116409 (2019)
  40. Karpushin A A, Gritsenko V A Jetp Lett. 108 127 (2018)
  41. Karpov S Y, Zakheim D A et al Semicond. Sci. Technol. 33 025009 (2018)
  42. Perevalov T V, Gritsenko V A et al Nanotechnology 29 264001 (2018)
  43. Islamov D R, Gritsenko V A et al Phys. Solid State 60 2050 (2018)
  44. Tikhov S V, Gorshkov O N et al Semiconductors 52 1540 (2018)
  45. Stockman A, Masin F et al IEEE Trans. Electron Devices 65 5365 (2018)
  46. Birmpiliotis D, Koutsoureli M et al Microelectronics Reliability 88-90 840 (2018)
  47. Andreev D, Bondarenko G et al KEM 781 47 (2018)
  48. Tikhov S V, Mikhaylov A N et al Microelectronic Engineering 187-188 134 (2018)
  49. Andreeva N, Ivanov A, Petrov A 8 (2) (2018)
  50. Gritsenko V A Uspekhi Fizicheskikh Nauk 187 971 (2017) [Gritsenko V A Phys.-Usp. 60 902 (2017)]
  51. Islamov D R, Gritsenko V A, Chin A Optoelectron.Instrument.Proc. 53 184 (2017)
  52. Shvets V A, Kruchinin V N, Gritsenko V A Opt. Spectrosc. 123 728 (2017)
  53. Kostina S S, Hanson M P et al ACS Photonics 3 1877 (2016)
  54. Gritsenko V A, Perevalov T V, Islamov D R Physics Reports 613 1 (2016)
  55. Aban’shin N P, Loginov A P et al 2016 29th International Vacuum Nanoelectronics Conference (IVNC), (2016) p. 1
  56. Alekseeva L, Nabatame T et al Jpn. J. Appl. Phys. 55 08PB02 (2016)
  57. Aban’shin N P, Avetisyan Yu A et al Tech. Phys. Lett. 42 509 (2016)
  58. Iljinas A, Stankus V Applied Surface Science 381 2 (2016)
  59. Iljinas A, Stankus V Thin Solid Films 601 106 (2016)
  60. Iljinas A, Marcinauskas L, Stankus V Applied Surface Science 381 6 (2016)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions