Issues

 / 

2012

 / 

June

  

Reviews of topical problems


Solitons and collapses: two evolution scenarios of nonlinear wave systems

 a, b, c
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 119334, Russian Federation
c Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russian Federation

Two alternative scenarios pertaining to the evolution of nonlinear wave systems are considered: solitons and wave collapses. For the former, it suffices that the Hamiltonian be bounded from below (or above), and then the soliton realizing its minimum (or maximum) is Lyapunov stable. The extremum is approached via the radiation of small-amplitude waves, a process absent in systems with finitely many degrees of freedom. The framework of the nonlinear Schrödinger equation and the three-wave system is used to show how the boundedness of the Hamiltonian — and hence the stability of the soliton minimizing it — can be proved rigorously using the integral estimate method based on the Sobolev embedding theorems. Wave systems with the Hamiltonians unbounded from below must evolve to a collapse, which can be considered as the fall of a particle in an unbounded potential. The radiation of small-amplitude waves promotes collapse in this case.

Fulltext pdf (683 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0182.201206a.0569
PACS: 42.65.Jx, 42.65.Tg, 47.35.Fg, 47.35.Jk, 52.35.Sb (all)
DOI: 10.3367/UFNe.0182.201206a.0569
URL: https://ufn.ru/en/articles/2012/6/a/
000308868100001
2012PhyU...55..535Z
Citation: Zakharov V E, Kuznetsov E A "Solitons and collapses: two evolution scenarios of nonlinear wave systems" Phys. Usp. 55 535–556 (2012)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 14th, July 2011, 2nd, August 2011

Оригинал: Захаров В Е, Кузнецов Е А «Солитоны и коллапсы: два сценария эволюции нелинейных волновых систем» УФН 182 569–592 (2012); DOI: 10.3367/UFNr.0182.201206a.0569

References (103) Cited by (124) Similar articles (20) ↓

  1. M.Yu. Kagan, A.V. Turlapov “BCS—BEC crossover, collective excitations, and hydrodynamics of superfluid quantum fluids and gasesPhys. Usp. 62 215–248 (2019)
  2. S.A. Akhmanov, A.P. Sukhorukov, R.V. Khokhlov “Self-focusing and diffraction of light in a Nonlinear mediumSov. Phys. Usp. 10 609–636 (1968)
  3. S.K. Turitsyn, N.N. Rozanov et alDissipative solitons in fiber lasersPhys. Usp. 59 642–668 (2016)
  4. S.V. Chekalin, V.P. Kandidov “From self-focusing light beams to femtosecond laser pulse filamentationPhys. Usp. 56 123–140 (2013)
  5. S.A. Akhmanov, V.A. Vysloukh, A.S. Chirkin “Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generationSov. Phys. Usp. 29 642–647 (1986)
  6. M.Yu. Kagan, V.A. Mitskan, M.M. Korovushkin “Anomalous superconductivity and superfluidity in repulsive fermion systemsPhys. Usp. 58 733–761 (2015)
  7. V.G. Makhan’kov, Yu.P. Rybakov, V.I. Sanyuk “Localised nontopological structures: construction of solutions and stability problemsPhys. Usp. 37 113–137 (1994)
  8. V.A. Aleshkevich, G.D. Kozhoridze, A.N. Matveev “Self-action of partly coherent laser radiationSov. Phys. Usp. 34 (9) 777–803 (1991)
  9. N.A. Veretenov, N.N. Rosanov, S.V. Fedorov “Laser solitons: topological and quantum phenomenaPhys. Usp. 65 131–162 (2022)
  10. V.E. Zakharov, E.A. Kuznetsov “Hamiltonian formalism for nonlinear wavesPhys. Usp. 40 1087–1116 (1997)
  11. P.K. Shukla, B. Eliasson “Nonlinear aspects of quantum plasma physicsPhys. Usp. 53 51–76 (2010)
  12. V.F. Kop’ev, S.A. Chernyshev “Vortex ring oscillations, the development of turbulence in vortex rings and generation of soundPhys. Usp. 43 663–690 (2000)
  13. V.N. Lugovoi, A.M. Prokhorov “Theory of the propagation of high-power laser radiation in a nonlinear mediumSov. Phys. Usp. 16 658–679 (1974)
  14. A.I. Zhakin “Electrohydrodynamics of charged surfacesPhys. Usp. 56 141–163 (2013)
  15. F.F. Komarov “Defect and track formation in solids irradiated by superhigh-energy ionsPhys. Usp. 46 1253–1282 (2003)
  16. V.V. Val’kov, M.S. Shustin et alTopological superconductivity and Majorana states in low-dimensional systemsPhys. Usp. 65 2–39 (2022)
  17. T.I. Belova, A.E. Kudryavtsev “Solitons and their interactions in classical field theoryPhys. Usp. 40 359–386 (1997)
  18. A.M. Miterev “Theoretical aspects of the formation and evolution of charged particle tracksPhys. Usp. 45 1019–1050 (2002)
  19. B.S. Kerner, V.V. Osipov “AutosolitonsSov. Phys. Usp. 32 101–138 (1989)
  20. F.V. Bunkin, Yu.A. Kravtsov, G.A. Lyakhov “Acoustic analogues of nonlinear-optics phenomenaSov. Phys. Usp. 29 607–619 (1986)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions