Issues

 / 

2012

 / 

June

  

Reviews of topical problems


Solitons and collapses: two evolution scenarios of nonlinear wave systems

 a, b, c
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 119334, Russian Federation
c Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russian Federation

Two alternative scenarios pertaining to the evolution of nonlinear wave systems are considered: solitons and wave collapses. For the former, it suffices that the Hamiltonian be bounded from below (or above), and then the soliton realizing its minimum (or maximum) is Lyapunov stable. The extremum is approached via the radiation of small-amplitude waves, a process absent in systems with finitely many degrees of freedom. The framework of the nonlinear Schrödinger equation and the three-wave system is used to show how the boundedness of the Hamiltonian — and hence the stability of the soliton minimizing it — can be proved rigorously using the integral estimate method based on the Sobolev embedding theorems. Wave systems with the Hamiltonians unbounded from below must evolve to a collapse, which can be considered as the fall of a particle in an unbounded potential. The radiation of small-amplitude waves promotes collapse in this case.

Fulltext pdf (683 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0182.201206a.0569
PACS: 42.65.Jx, 42.65.Tg, 47.35.Fg, 47.35.Jk, 52.35.Sb (all)
DOI: 10.3367/UFNe.0182.201206a.0569
URL: https://ufn.ru/en/articles/2012/6/a/
000308868100001
2012PhyU...55..535Z
Citation: Zakharov V E, Kuznetsov E A "Solitons and collapses: two evolution scenarios of nonlinear wave systems" Phys. Usp. 55 535–556 (2012)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 14th, July 2011, 2nd, August 2011

Îðèãèíàë: Çàõàðîâ Â Å, Êóçíåöîâ Å À «Ñîëèòîíû è êîëëàïñû: äâà ñöåíàðèÿ ýâîëþöèè íåëèíåéíûõ âîëíîâûõ ñèñòåì» ÓÔÍ 182 569–592 (2012); DOI: 10.3367/UFNr.0182.201206a.0569

References (103) Cited by (124) ↓ Similar articles (20)

  1. Zhong M, Chen Y et al Proc. R. Soc. A. 480 (2282) (2024)
  2. Yao X, Ma J, Meng G Nonlinear Dyn 112 18435 (2024)
  3. Elkamash I S, Reville B et al Chaos, Solitons & Fractals 188 115531 (2024)
  4. Yu K M, I K K et al Springer Series In Solid-State Sciences Vol. Electronic Phase Separation in Magnetic and Superconducting MaterialsIntroduction. Spontaneously Formed Nanoscale Inhomogenieties in Different Materials201 Chapter 1 (2024) p. 1
  5. Jin X-W, Yang Zh-Y et al Phys. Rev. B 109 (1) (2024)
  6. Lashkin V M Phys. Rev. E 109 (6) (2024)
  7. Lashkin V M, Cheremnykh O K 36 (2) (2024)
  8. Lashkin V M 31 (4) (2024)
  9. Kochurin E  A, Kuznetsov E  A Phys. Rev. Lett. 133 (20) (2024)
  10. Lashkin V M, Cheremnykh O K Phys. Rev. E 110 (2) (2024)
  11. Liu D, Gao Ya et al Optics & Laser Technology 177 111181 (2024)
  12. Gelash A, Dremov S et al Phys. Rev. Lett. 132 (13) (2024)
  13. Ostrovsky L, Pelinovsky E et al 34 (6) (2024)
  14. Dong L, Fan M, Malomed B A Chaos, Solitons & Fractals 188 115499 (2024)
  15. Ruban V P Jetp Lett. 119 585 (2024)
  16. Jin X-W, Yang Zh-Y et al Phys. Rev. B 109 (13) (2024)
  17. Yu K M, I K K et al Springer Series In Solid-State Sciences Vol. Electronic Phase Separation in Magnetic and Superconducting MaterialsDroplets Formation, BEC and Superconductivity in Quantum Gases, Metallic Hydrogen and Excitonic Systems201 Chapter 14 (2024) p. 289
  18. Malomed B A Advances In Physics: X 9 (1) (2024)
  19. Ruban V P Pisʹma V žurnal êksperimentalʹnoj I Teoretičeskoj Fiziki 119 579 (2024)
  20. Kuznetsov E A Radiophys Quantum El 66 305 (2023)
  21. Chen Zh, Li Y et al Communications In Nonlinear Science And Numerical Simulation 118 107013 (2023)
  22. Li Ch, Konotop V V et al Chaos, Solitons & Fractals 174 113848 (2023)
  23. Dong L, Fan M Chaos, Solitons & Fractals 173 113728 (2023)
  24. Lashkin V M, Cheremnykh O K et al Phys. Rev. E 107 (2) (2023)
  25. Kukushkin A B, Kulichenko A A Foundations 3 602 (2023)
  26. Zemlyanov A A, Minina O V Atmos Ocean Opt 36 314 (2023)
  27. Zemlyanov A A, Minina O V et al XVI International Conference on Pulsed Lasers and Laser Applications, (2023) p. 16
  28. Tribelsky M I Proc. R. Soc. A. 479 (2277) (2023)
  29. Kumar Sh, Li P, Malomed B A Phys. Rev. E 108 (2) (2023)
  30. Kagan M Yu, Aksenov S V et al Jetp Lett. 117 755 (2023)
  31. Levkov D  G, Maslov V  E Phys. Rev. D 108 (6) (2023)
  32. Kagan M Yu, Aksenov S V et al Pisʹma V žurnal êksperimentalʹnoj I Teoretičeskoj Fiziki 117 754 (2023)
  33. Kuznetsov E A J. Exp. Theor. Phys. 135 121 (2022)
  34. Levkov D G, Maslov V E et al J. High Energ. Phys. 2022 (12) (2022)
  35. Malomed B A 48 856 (2022)
  36. Agafontsev D S, Kuznetsov E A et al Phys.-Usp. 65 189 (2022)
  37. Chen Zh, Li Y et al SSRN Journal (2022)
  38. Garani R, Levkov D, Tinyakov P Phys. Rev. D 105 (6) (2022)
  39. Rao J, He J, Malomed B A 63 (1) (2022)
  40. Fokas A S, Cao Yu, He J Fractal Fract 6 425 (2022)
  41. Malomed B A Multidimensional Solitons (2022) p. 1-1
  42. Kontorovich V M, Poslavskyi S A 48 413 (2022)
  43. Malomed B A Multidimensional Solitons (2022) p. 9-1
  44. Deng D, Yuan Zh et al Geophysical Research Letters 49 (4) (2022)
  45. Mezentsev V K, Podivilov E et al Phys. Rev. E 106 (5) (2022)
  46. Vitanov N K Entropy 24 1653 (2022)
  47. Belashov V Yu, Kharshiladze O A, Belashova E S Geomagn. Aeron. 61 149 (2021)
  48. Rao J, Chow K W et al Stud Appl Math 147 1007 (2021)
  49. Dmitriev A  S, Levkov D  G et al Phys. Rev. D 104 (2) (2021)
  50. Sinkevich O A High Temp 59 77 (2021)
  51. Fonkoua S A T, Pelap F B et al Eur. Phys. J. Plus 136 (4) (2021)
  52. PELAP François Beceau, NDECFO Jean Emac, DEFFO Guy Roger Phys. Scr. 96 075211 (2021)
  53. Guo L, Chabchoub A, He J Physica D: Nonlinear Phenomena 426 132990 (2021)
  54. Mullyadzhanov R I, Gelash A A Radiophys Quantum El 63 786 (2021)
  55. Khalili S, Hasanbeigi A, Sobhanian S Plasma Phys. Rep. 47 298 (2021)
  56. Zuev L B Multiscale Biomechanics and Tribology of Inorganic and Organic Systems Springer Tracts In Mechanical Engineering Chapter 12 (2021) p. 245
  57. Kuznetsov E A, Kagan M Yu J. Exp. Theor. Phys. 132 704 (2021)
  58. Kochurin E A, Zubarev N M Fluids 6 125 (2021)
  59. Oloo J O, Shrira V I Teoreticheskaya Matematicheskaya Fizika 203 91 (2020) [Oloo J O, Shrira V I Theor Math Phys 203 512 (2020)]
  60. Ma D, Koval V, Jia Ch New J. Phys. 22 013046 (2020)
  61. Bulanov S  V, Sasorov P  V et al Phys. Rev. D 101 (1) (2020)
  62. Levkov D  G, Panin A  G, Tkachev I  I Phys. Rev. D 102 (2) (2020)
  63. Zubarev N M, Kochurin E A Theor Math Phys 202 352 (2020)
  64. Chavanis P-H Phys. Rev. D 102 (8) (2020)
  65. Kuznetsov E A, Kagan M Yu, Turlapov A V Phys. Rev. A 101 (4) (2020)
  66. Chekhovskoy I S, Shtyrina O V et al Opt. Express 28 7817 (2020)
  67. Alfimov G L, Fedotov A P, Sinelshchikov D I Physica D: Nonlinear Phenomena 402 132245 (2020)
  68. Nugaev E Ya, Shkerin A V J. Exp. Theor. Phys. 130 301 (2020)
  69. Kuznetsov E A, Kagan M Yu Theor Math Phys 202 399 (2020)
  70. Smolyakov M N Chaos, Solitons & Fractals 132 109570 (2020)
  71. Sary G, Gremillet L, Canaud B 26 (7) (2019)
  72. Konyukhov A I, Shchurkin E V et al J. Exp. Theor. Phys. 128 384 (2019)
  73. D’Ambroise J, Kevrekidis P G Phys. Scr. 94 115203 (2019)
  74. Dingwall R J, Öhberg P Phys. Rev. A 99 (2) (2019)
  75. Alimenkov I V Theor Math Phys 201 1581 (2019)
  76. Goncharov V P 26 (9) (2019)
  77. Cisneros-Ake L A, Carretero-González R et al Communications In Nonlinear Science And Numerical Simulation 74 268 (2019)
  78. Degasperis A, Lombardo S, Sommacal M Fluids 4 57 (2019)
  79. Djoko M, Kofane T C Communications In Nonlinear Science And Numerical Simulation 68 169 (2019)
  80. Chekhovskoy I S, Sidelnikov O S et al Handbook of Optical Fibers Chapter 15 (2019) p. 317
  81. Abrashkin A A, Pelinovsky E N Uspekhi Fizicheskikh Nauk 188 329 (2018) [Abrashkin A A, Pelinovsky E N Phys.-Usp. 61 307 (2018)]
  82. Selezov I T, Kryvonos Yu G, Gandzha I S Wave Propagation and Diffraction Foundations Of Engineering Mechanics Chapter 2 (2018) p. 25
  83. Kachulin D, Gelash A Nonlin. Processes Geophys. 25 553 (2018)
  84. Clarke S, Gorshkov K et al Physica D: Nonlinear Phenomena 366 43 (2018)
  85. Goncharov V P, Pavlov V I J. Exp. Theor. Phys. 126 276 (2018)
  86. Kartashov Ya V, Malomed B A et al Phys. Rev. A 98 (1) (2018)
  87. Vuillon L, Dutykh D, Fedele F Communications In Nonlinear Science And Numerical Simulation 57 202 (2018)
  88. Chavanis P-H Phys. Rev. D 98 (2) (2018)
  89. Shtyrina O V, Fedoruk M P et al Phys. Rev. A 97 (1) (2018)
  90. Chekhovskoy I S, Sidelnikov O S et al Handbook of Optical Fibers Chapter 15-1 (2018) p. 1
  91. Kuznetsov E A Physics Letters A 382 2049 (2018)
  92. Gao X, Zeng J Front. Phys. 13 (1) (2018)
  93. Shtyrina O V, Kivshar Y S et al Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), (2018) p. JTu5A.45
  94. Ablowitz M J, Ma Y-P, Rumanov I SIAM J. Appl. Math. 77 1248 (2017)
  95. Zuev L B Phys. Metals Metallogr. 118 810 (2017)
  96. Komarov F F Uspekhi Fizicheskikh Nauk 187 465 (2017) [Komarov F F Phys.-Usp. 60 435 (2017)]
  97. Levkov D  G, Panin A  G, Tkachev I  I Phys. Rev. Lett. 118 (1) (2017)
  98. Levkov D, Nugaev E, Popescu A J. High Energ. Phys. 2017 (12) (2017)
  99. Belashov V Yu, Belashova E S Geomagn. Aeron. 56 716 (2016)
  100. Pchelkina Y Z, Alimenkov I V J. Phys.: Conf. Ser. 738 012016 (2016)
  101. Pushkarev A, Zakharov V Ocean Modelling 103 18 (2016)
  102. Lushchik A, Lushchik Ch et al Nuclear Instruments And Methods In Physics Research Section B: Beam Interactions With Materials And Atoms 374 90 (2016)
  103. Zagorodnii A G, Kirichok A V, Kuklin V M Uspekhi Fizicheskikh Nauk 186 743 (2016)
  104. Chekhovskoy I S, Rubenchik A M et al Phys. Rev. A 94 (4) (2016)
  105. Goncharov V P, Pavlov V I Jetp Lett. 101 438 (2015)
  106. Nikitenkova S, Singh N, Stepanyants Y 25 (12) (2015)
  107. Shablonin E, Popov A I et al Physica B: Condensed Matter 477 133 (2015)
  108. Goncharov V P, Pavlov V I Phys. Rev. E 91 (4) (2015)
  109. Zhang Y-Ch, Zhou Zh-W et al Phys. Rev. Lett. 115 (25) (2015)
  110. Sinkevich O A J. Exp. Theor. Phys. 121 321 (2015)
  111. Zemlyanov A A, Bulygin A D, Geints Yu E Atmos Ocean Opt 27 463 (2014)
  112. Gandzha I S, Sedletsky Yu V, Dutykh D S Ukr. J. Phys. 59 1201 (2014)
  113. Borhanian J, Hosseini F F 21 (4) (2014)
  114. Kuznetsov E A, Passot T, Sulem P L Jetp Lett. 96 642 (2013)
  115. Zotov O D, Guglielmi A V, Sobisevich A L Izv., Phys. Solid Earth 49 882 (2013)
  116. Bannikova E Yu, Kontorovich V M, Poslavsky S A J. Exp. Theor. Phys. 117 378 (2013)
  117. POKLONSKI N A, VLASSOV A T et al Physics, Chemistry and Applications of Nanostructures, (2013) p. 36
  118. Postupaev V V, Burdakov A V et al 20 (9) (2013)
  119. Goncharov V P, Pavlov V I J. Exp. Theor. Phys. 117 754 (2013)
  120. Goncharov V P, Pavlov V I Phys. Rev. E 88 (2) (2013)
  121. Lushchik A, Lushchik Ch et al Physica Status Solidi (b) 250 261 (2013)
  122. Zaspa Yu P J. Frict. Wear 34 317 (2013)
  123. Sazonov S V J. Exp. Theor. Phys. 117 885 (2013)
  124. Sakbaev V Zh P-Adic Num Ultrametr Anal Appl 4 306 (2012)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions