Issues

 / 

2012

 / 

June

  

Reviews of topical problems


Solitons and collapses: two evolution scenarios of nonlinear wave systems

 a, b, c
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 119334, Russian Federation
c Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russian Federation

Two alternative scenarios pertaining to the evolution of nonlinear wave systems are considered: solitons and wave collapses. For the former, it suffices that the Hamiltonian be bounded from below (or above), and then the soliton realizing its minimum (or maximum) is Lyapunov stable. The extremum is approached via the radiation of small-amplitude waves, a process absent in systems with finitely many degrees of freedom. The framework of the nonlinear Schrödinger equation and the three-wave system is used to show how the boundedness of the Hamiltonian — and hence the stability of the soliton minimizing it — can be proved rigorously using the integral estimate method based on the Sobolev embedding theorems. Wave systems with the Hamiltonians unbounded from below must evolve to a collapse, which can be considered as the fall of a particle in an unbounded potential. The radiation of small-amplitude waves promotes collapse in this case.

Fulltext pdf (683 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0182.201206a.0569
PACS: 42.65.Jx, 42.65.Tg, 47.35.Fg, 47.35.Jk, 52.35.Sb (all)
DOI: 10.3367/UFNe.0182.201206a.0569
URL: https://ufn.ru/en/articles/2012/6/a/
000308868100001
2012PhyU...55..535Z
Citation: Zakharov V E, Kuznetsov E A "Solitons and collapses: two evolution scenarios of nonlinear wave systems" Phys. Usp. 55 535–556 (2012)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 14th, July 2011, 2nd, August 2011

Оригинал: Захаров В Е, Кузнецов Е А «Солитоны и коллапсы: два сценария эволюции нелинейных волновых систем» УФН 182 569–592 (2012); DOI: 10.3367/UFNr.0182.201206a.0569

References (103) Cited by (112) ↓ Similar articles (20)

  1. Malomed B A Advances In Physics: X 9 (1) (2024)
  2. Jin X-W, Yang Zh-Y et al Phys. Rev. B 109 (13) (2024)
  3. Lashkin V M, Cheremnykh O K 36 (2) (2024)
  4. Zhong M, Chen Y et al Proc. R. Soc. A. 480 (2282) (2024)
  5. Jin X-W, Yang Zh-Y et al Phys. Rev. B 109 (1) (2024)
  6. Gelash A, Dremov S et al Phys. Rev. Lett. 132 (13) (2024)
  7. Kumar Sh, Li P, Malomed B A Phys. Rev. E 108 (2) (2023)
  8. Kukushkin A B, Kulichenko A A Foundations 3 602 (2023)
  9. Dong L, Fan M Chaos, Solitons & Fractals 173 113728 (2023)
  10. Zemlyanov A A, Minina O V Atmos Ocean Opt 36 314 (2023)
  11. Chen Zh, Li Y et al Communications In Nonlinear Science And Numerical Simulation 118 107013 (2023)
  12. Kagan M Yu, Aksenov S V et al Jetp Lett. 117 755 (2023)
  13. Zemlyanov A A, Minina O V et al XVI International Conference on Pulsed Lasers and Laser Applications, (2023) p. 16
  14. Levkov D  G, Maslov V  E Phys. Rev. D 108 (6) (2023)
  15. Kuznetsov E A Radiophys Quantum El 66 305 (2023)
  16. Li Ch, Konotop V V et al Chaos, Solitons & Fractals 174 113848 (2023)
  17. Kagan M Yu, Aksenov S V et al Pisʹma V žurnal êksperimentalʹnoj I Teoretičeskoj Fiziki 117 754 (2023)
  18. Tribelsky M I Proc. R. Soc. A. 479 (2277) (2023)
  19. Lashkin V M, Cheremnykh O K et al Phys. Rev. E 107 (2) (2023)
  20. Agafontsev D S, Kuznetsov E A et al Phys.-Usp. 65 189 (2022)
  21. Levkov D G, Maslov V E et al J. High Energ. Phys. 2022 (12) (2022)
  22. Vitanov N K Entropy 24 1653 (2022)
  23. Kuznetsov E A J. Exp. Theor. Phys. 135 121 (2022)
  24. Chen Zh, Li Y et al SSRN Journal (2022)
  25. Malomed B A Multidimensional Solitons (2022) p. 1-1
  26. Garani R, Levkov D, Tinyakov P Phys. Rev. D 105 (6) (2022)
  27. Mezentsev V K, Podivilov E et al Phys. Rev. E 106 (5) (2022)
  28. Fokas A S, Cao Yu, He J Fractal Fract 6 425 (2022)
  29. Malomed B A 48 856 (2022)
  30. Deng D, Yuan Zh et al Geophysical Research Letters 49 (4) (2022)
  31. Malomed B A Multidimensional Solitons (2022) p. 9-1
  32. Kontorovich V M, Poslavskyi S A 48 413 (2022)
  33. Zavyalov A, Zotov O et al Applied Sciences 12 9965 (2022)
  34. Rao J, He J, Malomed B A 63 (1) (2022)
  35. Sinkevich O A High Temp 59 77 (2021)
  36. Belashov V Yu, Kharshiladze O A, Belashova E S Geomagn. Aeron. 61 149 (2021)
  37. Rao J, Chow K W et al Stud Appl Math 147 1007 (2021)
  38. Dmitriev A  S, Levkov D  G et al Phys. Rev. D 104 (2) (2021)
  39. Khalili S, Hasanbeigi A, Sobhanian S Plasma Phys. Rep. 47 298 (2021)
  40. Fonkoua S A T, Pelap F B et al Eur. Phys. J. Plus 136 (4) (2021)
  41. PELAP François Beceau, NDECFO Jean Emac, DEFFO Guy Roger Phys. Scr. 96 075211 (2021)
  42. Guo L, Chabchoub A, He J Physica D: Nonlinear Phenomena 426 132990 (2021)
  43. Mullyadzhanov R I, Gelash A A Radiophys Quantum El 63 786 (2021)
  44. Kochurin E A, Zubarev N M Fluids 6 125 (2021)
  45. Zuev L B Multiscale Biomechanics and Tribology of Inorganic and Organic Systems Springer Tracts In Mechanical Engineering Chapter 12 (2021) p. 245
  46. Kuznetsov E A, Kagan M Yu J. Exp. Theor. Phys. 132 704 (2021)
  47. Bulanov S  V, Sasorov P  V et al Phys. Rev. D 101 (1) (2020)
  48. Nugaev E Ya, Shkerin A V J. Exp. Theor. Phys. 130 301 (2020)
  49. Chekhovskoy I S, Shtyrina O V et al Opt. Express 28 7817 (2020)
  50. Oloo J O, Shrira V I Teoreticheskaya Matematicheskaya Fizika 203 91 (2020) [Oloo J O, Shrira V I Theor Math Phys 203 512 (2020)]
  51. Levkov D  G, Panin A  G, Tkachev I  I Phys. Rev. D 102 (2) (2020)
  52. Ma D, Koval V, Jia Ch New J. Phys. 22 013046 (2020)
  53. Zubarev N M, Kochurin E A Theor Math Phys 202 352 (2020)
  54. Kuznetsov E A, Kagan M Yu, Turlapov A V Phys. Rev. A 101 (4) (2020)
  55. Chavanis P-H Phys. Rev. D 102 (8) (2020)
  56. Kuznetsov E A, Kagan M Yu Theor Math Phys 202 399 (2020)
  57. Smolyakov M N Chaos, Solitons & Fractals 132 109570 (2020)
  58. Alfimov G L, Fedotov A P, Sinelshchikov D I Physica D: Nonlinear Phenomena 402 132245 (2020)
  59. D’Ambroise J, Kevrekidis P G Phys. Scr. 94 115203 (2019)
  60. Konyukhov A I, Shchurkin E V et al J. Exp. Theor. Phys. 128 384 (2019)
  61. Sary G, Gremillet L, Canaud B 26 (7) (2019)
  62. Dingwall R J, Öhberg P Phys. Rev. A 99 (2) (2019)
  63. Cisneros-Ake L A, Carretero-González R et al Communications In Nonlinear Science And Numerical Simulation 74 268 (2019)
  64. Degasperis A, Lombardo S, Sommacal M Fluids 4 57 (2019)
  65. Djoko M, Kofane T C Communications In Nonlinear Science And Numerical Simulation 68 169 (2019)
  66. Goncharov V P 26 (9) (2019)
  67. Chekhovskoy I S, Sidelnikov O S et al Handbook of Optical Fibers Chapter 15 (2019) p. 317
  68. Alimenkov I V Theor Math Phys 201 1581 (2019)
  69. Kuznetsov E A Physics Letters A 382 2049 (2018)
  70. Kachulin D, Gelash A Nonlin. Processes Geophys. 25 553 (2018)
  71. Selezov I T, Kryvonos Yu G, Gandzha I S Wave Propagation and Diffraction Foundations Of Engineering Mechanics Chapter 2 (2018) p. 25
  72. Clarke S, Gorshkov K et al Physica D: Nonlinear Phenomena 366 43 (2018)
  73. Shtyrina O V, Kivshar Y S et al Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), (2018) p. JTu5A.45
  74. Shtyrina O V, Fedoruk M P et al Phys. Rev. A 97 (1) (2018)
  75. Vuillon L, Dutykh D, Fedele F Communications In Nonlinear Science And Numerical Simulation 57 202 (2018)
  76. Kartashov Ya V, Malomed B A et al Phys. Rev. A 98 (1) (2018)
  77. Goncharov V P, Pavlov V I J. Exp. Theor. Phys. 126 276 (2018)
  78. Gao X, Zeng J Front. Phys. 13 (1) (2018)
  79. Chekhovskoy I S, Sidelnikov O S et al Handbook of Optical Fibers Chapter 15-1 (2018) p. 1
  80. Chavanis P-H Phys. Rev. D 98 (2) (2018)
  81. Abrashkin A A, Pelinovsky E N Uspekhi Fizicheskikh Nauk 188 329 (2018)
  82. Levkov D, Nugaev E, Popescu A J. High Energ. Phys. 2017 (12) (2017)
  83. Komarov F F Uspekhi Fizicheskikh Nauk 187 465 (2017)
  84. Zuev L B Phys. Metals Metallogr. 118 810 (2017)
  85. Ablowitz M J, Ma Y-P, Rumanov I SIAM J. Appl. Math. 77 1248 (2017)
  86. Levkov D  G, Panin A  G, Tkachev I  I Phys. Rev. Lett. 118 (1) (2017)
  87. Chekhovskoy I S, Rubenchik A M et al Phys. Rev. A 94 (4) (2016)
  88. Pushkarev A, Zakharov V Ocean Modelling 103 18 (2016)
  89. Zagorodnii A G, Kirichok A V, Kuklin V M Uspekhi Fizicheskikh Nauk 186 743 (2016)
  90. Pchelkina Y Z, Alimenkov I V J. Phys.: Conf. Ser. 738 012016 (2016)
  91. Belashov V Yu, Belashova E S Geomagn. Aeron. 56 716 (2016)
  92. Lushchik A, Lushchik Ch et al Nuclear Instruments And Methods In Physics Research Section B: Beam Interactions With Materials And Atoms 374 90 (2016)
  93. Sinkevich O A J. Exp. Theor. Phys. 121 321 (2015)
  94. Shablonin E, Popov A I et al Physica B: Condensed Matter 477 133 (2015)
  95. Goncharov V P, Pavlov V I Phys. Rev. E 91 (4) (2015)
  96. Zhang Y-Ch, Zhou Zh-W et al Phys. Rev. Lett. 115 (25) (2015)
  97. Goncharov V P, Pavlov V I Jetp Lett. 101 438 (2015)
  98. Nikitenkova S, Singh N, Stepanyants Y 25 (12) (2015)
  99. Borhanian J, Hosseini F F 21 (4) (2014)
  100. Zemlyanov A A, Bulygin A D, Geints Yu E Atmos Ocean Opt 27 463 (2014)
  101. Gandzha I S, Sedletsky Yu V, Dutykh D S Ukr. J. Phys. 59 1201 (2014)
  102. Postupaev V V, Burdakov A V et al 20 (9) (2013)
  103. Bannikova E Yu, Kontorovich V M, Poslavsky S A J. Exp. Theor. Phys. 117 378 (2013)
  104. Zotov O D, Guglielmi A V, Sobisevich A L Izv., Phys. Solid Earth 49 882 (2013)
  105. POKLONSKI N A, VLASSOV A T et al Physics, Chemistry and Applications of Nanostructures, (2013) p. 36
  106. Goncharov V P, Pavlov V I Phys. Rev. E 88 (2) (2013)
  107. Zaspa Yu P J. Frict. Wear 34 317 (2013)
  108. Lushchik A, Lushchik Ch et al Physica Status Solidi (b) 250 261 (2013)
  109. Kuznetsov E A, Passot T, Sulem P L Jetp Lett. 96 642 (2013)
  110. Sazonov S V J. Exp. Theor. Phys. 117 885 (2013)
  111. Goncharov V P, Pavlov V I J. Exp. Theor. Phys. 117 754 (2013)
  112. Sakbaev V Zh P-Adic Num Ultrametr Anal Appl 4 306 (2012)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions