Issues

 / 

2012

 / 

June

  

Reviews of topical problems


Solitons and collapses: two evolution scenarios of nonlinear wave systems

 a, b, c
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 119334, Russian Federation
c Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russian Federation

Two alternative scenarios pertaining to the evolution of nonlinear wave systems are considered: solitons and wave collapses. For the former, it suffices that the Hamiltonian be bounded from below (or above), and then the soliton realizing its minimum (or maximum) is Lyapunov stable. The extremum is approached via the radiation of small-amplitude waves, a process absent in systems with finitely many degrees of freedom. The framework of the nonlinear Schrödinger equation and the three-wave system is used to show how the boundedness of the Hamiltonian — and hence the stability of the soliton minimizing it — can be proved rigorously using the integral estimate method based on the Sobolev embedding theorems. Wave systems with the Hamiltonians unbounded from below must evolve to a collapse, which can be considered as the fall of a particle in an unbounded potential. The radiation of small-amplitude waves promotes collapse in this case.

Fulltext pdf (683 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0182.201206a.0569
PACS: 42.65.Jx, 42.65.Tg, 47.35.Fg, 47.35.Jk, 52.35.Sb (all)
DOI: 10.3367/UFNe.0182.201206a.0569
URL: https://ufn.ru/en/articles/2012/6/a/
Citation: Zakharov V E, Kuznetsov E A "Solitons and collapses: two evolution scenarios of nonlinear wave systems" Phys. Usp. 55 535–556 (2012)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 14th, July 2011, 2nd, August 2011

Оригинал: Захаров В Е, Кузнецов Е А «Солитоны и коллапсы: два сценария эволюции нелинейных волновых систем» УФН 182 569–592 (2012); DOI: 10.3367/UFNr.0182.201206a.0569

References (103) Cited by (80) ↓ Similar articles (20)

  1. Rao J, He J, Malomed B A J. Math. Phys. 63 013510 (2022)
  2. Deng D, Yuan Zh et al Geophysical Research Letters 49 (4) (2022)
  3. Kuznetsov E A, Kagan M Yu J. Exp. Theor. Phys. 132 704 (2021)
  4. PELAP François Beceau, NDECFO Jean Emac, DEFFO Guy Roger Phys. Scr. 96 075211 (2021)
  5. Kochurin E A, Zubarev N M Fluids 6 125 (2021)
  6. Mullyadzhanov R I, Gelash A A Radiophys Quantum El 63 786 (2021)
  7. Guo L, Chabchoub A, He J Physica D: Nonlinear Phenomena 426 132990 (2021)
  8. Sinkevich O A High Temp 59 77 (2021)
  9. Dmitriev A  S, Levkov D  G et al Phys. Rev. D 104 (2) (2021)
  10. Khalili S, Hasanbeigi A, Sobhanian S Plasma Phys. Rep. 47 298 (2021)
  11. Fonkoua S A T, Pelap F B et al Eur. Phys. J. Plus 136 (4) (2021)
  12. Rao J, Chow K W et al Studies In Applied Mathematics 147 1007 (2021)
  13. Belashov V Yu, Kharshiladze O A, Belashova E S Geomagn. Aeron. 61 149 (2021)
  14. Ma D, Koval V, Jia Ch New J. Phys. 22 013046 (2020)
  15. Kuznetsov E A, Kagan M Yu, Turlapov A V Phys. Rev. A 101 (4) (2020)
  16. Chekhovskoy I S, Shtyrina O V et al Opt. Express 28 7817 (2020)
  17. Alfimov G L, Fedotov A P, Sinelshchikov D I Physica D: Nonlinear Phenomena 402 132245 (2020)
  18. Smolyakov M N Chaos, Solitons & Fractals 132 109570 (2020)
  19. Oloo J O, Shrira V I Theor Math Phys 203 512 (2020)
  20. Kuznetsov E A, Kagan M Yu Theor Math Phys 202 399 (2020)
  21. Olu D O, Oloo J O i dr Teoreticheskaya Matematicheskaya Fizika 203 91 (2020)
  22. Zubarev N M, Kochurin E A Theor Math Phys 202 352 (2020)
  23. Chavanis P-H Phys. Rev. D 102 (8) (2020)
  24. Levkov D  G, Panin A  G, Tkachev I  I Phys. Rev. D 102 (2) (2020)
  25. Bulanov S  V, Sasorov P  V et al Phys. Rev. D 101 (1) (2020)
  26. Nugaev E Ya, Shkerin A V J. Exp. Theor. Phys. 130 301 (2020)
  27. D’Ambroise J, Kevrekidis P G Phys. Scr. 94 115203 (2019)
  28. Degasperis A, Lombardo S, Sommacal M Fluids 4 57 (2019)
  29. Chekhovskoy I S, Sidelnikov O S et al Handbook of Optical Fibers Chapter 15 (2019) p. 317
  30. Sary G, Gremillet L, Canaud B Physics Of Plasmas 26 072118 (2019)
  31. Alimenkov I V Theor Math Phys 201 1581 (2019)
  32. Djoko M, Kofane T C Communications In Nonlinear Science And Numerical Simulation 68 169 (2019)
  33. Cisneros-Ake L A, Carretero-González R et al Communications In Nonlinear Science And Numerical Simulation 74 268 (2019)
  34. Konyukhov A I, Shchurkin E V et al J. Exp. Theor. Phys. 128 384 (2019)
  35. Goncharov V P Physics Of Plasmas 26 092901 (2019)
  36. Dingwall R J, Öhberg P Phys. Rev. A 99 (2) (2019)
  37. Shtyrina O V, Kivshar Y S et al Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), (2018) p. JTu5A.45
  38. Vuillon L, Dutykh D, Fedele F Communications In Nonlinear Science And Numerical Simulation 57 202 (2018)
  39. Selezov I T, Kryvonos Yu G, Gandzha I S Wave Propagation and Diffraction Foundations Of Engineering Mechanics Chapter 2 (2018) p. 25
  40. Kachulin D, Gelash A Nonlin. Processes Geophys. 25 553 (2018)
  41. Chekhovskoy I S, Sidelnikov O S et al Handbook of Optical Fibers Chapter 15-1 (2018) p. 1
  42. Kartashov Ya V, Malomed B A et al Phys. Rev. A 98 (1) (2018)
  43. Kuznetsov E A Physics Letters A 382 2049 (2018)
  44. Chavanis P-H Phys. Rev. D 98 (2) (2018)
  45. Gao X, Zeng J Front. Phys. 13 (1) (2018)
  46. Goncharov V P, Pavlov V I J. Exp. Theor. Phys. 126 276 (2018)
  47. Clarke S, Gorshkov K et al Physica D: Nonlinear Phenomena 366 43 (2018)
  48. Shtyrina O V, Fedoruk M P et al Phys. Rev. A 97 (1) (2018)
  49. Abrashkin A A, Pelinovsky E N Uspekhi Fizicheskikh Nauk 188 329 (2018)
  50. Levkov D, Nugaev E, Popescu A J. High Energ. Phys. 2017 (12) (2017)
  51. Komarov F F Uspekhi Fizicheskikh Nauk 187 465 (2017)
  52. Levkov D  G, Panin A  G, Tkachev I  I Phys. Rev. Lett. 118 (1) (2017)
  53. Zuev L B Phys. Metals Metallogr. 118 810 (2017)
  54. Ablowitz M J, Ma Y-P, Rumanov I SIAM J. Appl. Math. 77 1248 (2017)
  55. Zagorodnii A G, Kirichok A V, Kuklin V M Uspekhi Fizicheskikh Nauk 186 743 (2016)
  56. Belashov V Yu, Belashova E S Geomagn. Aeron. 56 716 (2016)
  57. Pchelkina Y Z, Alimenkov I V J. Phys.: Conf. Ser. 738 012016 (2016)
  58. Pushkarev A, Zakharov V Ocean Modelling 103 18 (2016)
  59. Lushchik A, Lushchik Ch et al Nuclear Instruments And Methods In Physics Research Section B: Beam Interactions With Materials And Atoms 374 90 (2016)
  60. Chekhovskoy I S, Rubenchik A M et al Phys. Rev. A 94 (4) (2016)
  61. Goncharov V P, Pavlov V I Jetp Lett. 101 438 (2015)
  62. Sinkevich O A J. Exp. Theor. Phys. 121 321 (2015)
  63. Zhang Y-Ch, Zhou Zh-W et al Phys. Rev. Lett. 115 (25) (2015)
  64. Nikitenkova S, Singh N, Stepanyants Y Chaos 25 123113 (2015)
  65. Goncharov V P, Pavlov V I Phys. Rev. E 91 (4) (2015)
  66. Shablonin E, Popov A I et al Physica B: Condensed Matter 477 133 (2015)
  67. Zemlyanov A A, Bulygin A D, Geints Yu E Atmos Ocean Opt 27 463 (2014)
  68. Borhanian J, Hosseini F F Physics Of Plasmas 21 042304 (2014)
  69. Gandzha I S, Sedletsky Yu V, Dutykh D S Ukr. J. Phys. 59 1201 (2014)
  70. POKLONSKI N A, VLASSOV A T et al Physics, Chemistry and Applications of Nanostructures, (2013) p. 36
  71. Zaspa Yu P J. Frict. Wear 34 317 (2013)
  72. Lushchik A, Lushchik Ch et al Phys. Status Solidi B 250 261 (2013)
  73. Goncharov V P, Pavlov V I Phys. Rev. E 88 (2) (2013)
  74. Kuznetsov E A, Passot T, Sulem P L Jetp Lett. 96 642 (2013)
  75. Postupaev V V, Burdakov A V et al Physics Of Plasmas 20 092304 (2013)
  76. Goncharov V P, Pavlov V I J. Exp. Theor. Phys. 117 754 (2013)
  77. Bannikova E Yu, Kontorovich V M, Poslavsky S A J. Exp. Theor. Phys. 117 378 (2013)
  78. Zotov O D, Guglielmi A V, Sobisevich A L Izv., Phys. Solid Earth 49 882 (2013)
  79. Sazonov S V J. Exp. Theor. Phys. 117 885 (2013)
  80. Sakbaev V Zh P-Adic Num Ultrametr Anal Appl 4 306 (2012)

© 1918–2023 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions