Issues

 / 

2012

 / 

May

  

Reviews of topical problems


Semiclassical model of the structure of matter


M.V. Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047, Russian Federation

The modern semiclassical method developed over the past few decades and used for describing the properties of the electronic subsystems of matter is reviewed, and its application to quantum physics problems is illustrated. The method involves the Thomas—Fermi statistical model and allows an extension by including additive corrections that take the shell structure of the electronic spectrum and other physical effects into account. Applying the method to the study of matter and finite systems allowed the following, inter alia: (1) an analysis of the total electron energy oscillations as a function of the number of particles in a 1D quantum dot; (2) a description of spatial oscillations of the electron density in atoms and atomic clusters; (3) a description of the stepwise temperature dependence of the ionicity and ionization energy in a Boltzmann plasma; (4) an evaluation of free ion ionization potentials; (5) an interpretation and evaluation of the difference in the patterns of oscillations in the mass spectra of metal clusters.

Fulltext pdf (1 MB)
Fulltext is also available at DOI: 10.3367/UFNe.0182.201205a.0457
PACS: 31.15.bt, 36.40.Cg, 52.25.Kn, 64.10.+h, 71.10.−w, 71.15.Mb (all)
DOI: 10.3367/UFNe.0182.201205a.0457
URL: https://ufn.ru/en/articles/2012/5/a/
000307559000001
2-s2.0-84864983227
2012PhyU...55..429S
Citation: Shpatakovskaya G V "Semiclassical model of the structure of matter" Phys. Usp. 55 429–464 (2012)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 27th, May 2011, revised: 15th, July 2011, 2nd, August 2011

Оригинал: Шпатаковская Г В «Квазиклассическая модель строения вещества» УФН 182 457–494 (2012); DOI: 10.3367/UFNr.0182.201205a.0457

References (154) Cited by (33) Similar articles (20) ↓

  1. D.A. Kirzhnits, Yu.E. Lozovik, G.V. Shpatakovskaya “Statistical model of matter18 649–672 (1975)
  2. A.V. Bushman, V.E. Fortov “Model equations of state26 465–496 (1983)
  3. R.F. Trunin “Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions37 1123–1145 (1994)
  4. R.S. Berry, B.M. Smirnov “Phase transitions in various kinds of clusters52 137–164 (2009)
  5. E.N. Avrorin, B.K. Vodolaga et alIntense shock waves and extreme states of matter36 (5) 337–364 (1993)
  6. B.M. Smirnov “Processes in expanding and condensing gases37 621–657 (1994)
  7. L.V. Al’tshuler “Use of shock waves in high-pressure physics8 52–91 (1965)
  8. R.S. Berry, B.M. Smirnov “Modeling of configurational transitions in atomic systems56 973–998 (2013)
  9. A.I. Voropinov, G.M. Gandel’man, V.G. Podval’nyi “Electronic energy spectra and the equation of state of solids at high pressures and temperatures13 56–72 (1970)
  10. G.N. Makarov “Laser IR fragmentation of molecular clusters: the role of channels for energy input and relaxation, influence of surroundings, dynamics of fragmentation60 227–258 (2017)
  11. G.N. Makarov “Kinetic methods for measuring the temperature of clusters and nanoparticles in molecular beams54 351–370 (2011)
  12. P.B. Sorokin, L.A. Chernozatonskii “Graphene-based semiconductor nanostructures56 105–122 (2013)
  13. V.Z. Kresin, Yu.N. Ovchinnikov “‘Giant’ strengthening of superconducting pairing in metallic nanoclusters: large enhancement of Tc and potential for room-temperature superconductivity51 427–435 (2008)
  14. P.K. Shukla, B. Eliasson “Nonlinear aspects of quantum plasma physics53 51–76 (2010)
  15. A.V. Nikolaev, A.V. Tsvyashchenko “The puzzle of the γ→α and other phase transitions in cerium55 657–680 (2012)
  16. E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii “Generalized dynamical mean-field theory in the physics of strongly correlated systems55 325–355 (2012)
  17. M.Yu. Kagan, V.A. Mitskan, M.M. Korovushkin “Anomalous superconductivity and superfluidity in repulsive fermion systems58 733–761 (2015)
  18. T.V. Perevalov, V.A. Gritsenko “Application and electronic structure of high-permittivity dielectrics53 561–575 (2010)
  19. G.N. Makarov “Experimental methods for determining the melting temperature and the heat of melting of clusters and nanoparticles53 179–198 (2010)
  20. A.V. Eletskii, I.M. Iskandarova et alGraphene: fabrication methods and thermophysical properties54 227–258 (2011)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions