Issues

 / 

2010

 / 

November

  

Reviews of topical problems


Gravitational radiation of systems and the role of their force field

,
Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

Gravitational radiation (GR) from compact relativistic systems with a known energy-momentum tensor (EMT) and GR from two masses elliptically orbiting their common center of inertia are considered. In the ultrarelativistic limit, the GR spectrum of a charge rotating in a uniform magnetic field, a Coulomb field, a magnetic moment field, and a combination of the last two fields differs by a factor of 4πGm2Γ2 / e2 (Γ being of the order of the charge Lorentz factor) from its electromagnetic radiation (EMR) spectrum. This factor is independent of the radiation frequency but does depend on the wave vector direction and the way the field behaves outside of the orbit. For a plane wave external field, the proportionality between the gravitational and electromagnetic radiation spectra is exact, whatever the velocity of the charge. Qualitative estimates of Γ are given for a charge moving ultrarelativistically in an arbitrary field, showing that it is of the order of the ratio of the nonlocal and local source contributions to the GR. The localization of external forces near the orbit violates the proportionality of the spectra and reduces GR by about the Lorentz factor squared. The GR spectrum of a rotating relativistic string with masses at the ends is given, and it is shown that the contributions by the masses and string are of the same order of magnitude. In the nonrelativistic limit, the harmonics of GR spectra behave universally for all the rotating systems considered. A trajectory method is developed for calculating the GR spectrum. In this method, the spatial (and hence polarization) components of the conserved EMT are calculated in the long wavelength approximation from the time component of the EMTs of the constituent masses of the system. Using this method, the GR spectrum of two masses moving in elliptic orbits about their common center of inertia is calculated, as are the relativistic corrections to it.

Fulltext pdf (415 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0180.201011b.1135
PACS: 04.20.−q, 04.30.−w, 41.60.−m (all)
DOI: 10.3367/UFNe.0180.201011b.1135
URL: https://ufn.ru/en/articles/2010/11/c/
000287186300003
2-s2.0-79955582024
Citation: Nikishov A I, Ritus V I "Gravitational radiation of systems and the role of their force field" Phys. Usp. 53 1093–1122 (2010)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Никишов А И, Ритус В И «Гравитационное излучение систем и роль их силового поля» УФН 180 1135–1165 (2010); DOI: 10.3367/UFNr.0180.201011b.1135

References (28) Cited by (6) Similar articles (20) ↓

  1. A. Trautman “The general theory of relativity9 319–339 (1966)
  2. V.B. Braginskii, V.N. Rudenko “Relativistic gravitational experiments13 165–181 (1970)
  3. N.A. Vinokurov, E.B. Levichev “Undulators and wigglers for production of radiation and other applications58 850–871 (2015)
  4. F.G. Bass, V.M. Yakovenko “Theory of radiation from a charge passing through an electrically inhomogeneous medium8 420–444 (1965)
  5. I.G. Dymnikova “Motion of particles and photons in the gravitational field of a rotating body (In memory of Vladimir Afanas’evich Ruban)29 215–237 (1986)
  6. M.V. Kuzelev, A.A. Rukhadze “Spontaneous and stimulated emission induced by an electron, electron bunch, and electron beam in a plasma51 989–1018 (2008)
  7. V.B. Braginskii “Gravitational radiation and the prospect of its experimental discovery8 513–521 (1966)
  8. K.Yu. Platonov, G.D. Fleishman “Transition radiation in media with random inhomogeneities45 235–291 (2002)
  9. B.M. Bolotovskii, E.A. Galst’yan “Diffraction and diffraction radiation43 755–775 (2000)
  10. D.F. Alferov, Yu.A. Bashmakov, P.A. Cherenkov “Radiation from relativistic electrons in a magnetic undulator32 200–227 (1989)
  11. M.L. Ter-Mikhaelyan “High energy electromagnetic processes in amorphous and inhomogeneous media46 1231–1252 (2003)
  12. N.G. Basov, O.N. Krokhin et alPossible investigation of relativistic effects with the aid of molecular and atomic frequency standards4 641–673 (1962)
  13. Ya.S. Bobovich, A.V. Bortkevich “Resonance stimulated raman scattering in molecular systems having normal and inverted populations of electronic states14 1–20 (1971)
  14. B.E. Meierovich “Gravitational properties of cosmic strings44 981–997 (2001)
  15. M.L. Ter-Mikhaelyan “Electromagnetic radiative processes in periodic media at high energies44 571–596 (2001)
  16. L.P. Grishchuk, V.M. Lipunov et alGravitational wave astronomy: in anticipation of first sources to be detected44 1–51 (2001)
  17. B.M. Bolotovskii, G.V. Voskresenskii “Emission from charged particles in periodic structures11 143–162 (1968)
  18. V.L. Ginzburg “What IS verified by measurements of the gravitational frequency shift?6 930–932 (1964)
  19. S.G. Turyshev “Experimental tests of general relativity: recent progress and future directions52 1–27 (2009)
  20. V.S. Imshennik “Rotational explosion mechanism for collapsing supernovae and the two-stage neutrino signal from supernova 1987A in the Large Magellanic Cloud53 1081–1092 (2010)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions