Issues

 / 

2010

 / 

November

  

Reviews of topical problems


Gravitational radiation of systems and the role of their force field

,
Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

Gravitational radiation (GR) from compact relativistic systems with a known energy-momentum tensor (EMT) and GR from two masses elliptically orbiting their common center of inertia are considered. In the ultrarelativistic limit, the GR spectrum of a charge rotating in a uniform magnetic field, a Coulomb field, a magnetic moment field, and a combination of the last two fields differs by a factor of 4πGm2Γ2 / e2 (Γ being of the order of the charge Lorentz factor) from its electromagnetic radiation (EMR) spectrum. This factor is independent of the radiation frequency but does depend on the wave vector direction and the way the field behaves outside of the orbit. For a plane wave external field, the proportionality between the gravitational and electromagnetic radiation spectra is exact, whatever the velocity of the charge. Qualitative estimates of Γ are given for a charge moving ultrarelativistically in an arbitrary field, showing that it is of the order of the ratio of the nonlocal and local source contributions to the GR. The localization of external forces near the orbit violates the proportionality of the spectra and reduces GR by about the Lorentz factor squared. The GR spectrum of a rotating relativistic string with masses at the ends is given, and it is shown that the contributions by the masses and string are of the same order of magnitude. In the nonrelativistic limit, the harmonics of GR spectra behave universally for all the rotating systems considered. A trajectory method is developed for calculating the GR spectrum. In this method, the spatial (and hence polarization) components of the conserved EMT are calculated in the long wavelength approximation from the time component of the EMTs of the constituent masses of the system. Using this method, the GR spectrum of two masses moving in elliptic orbits about their common center of inertia is calculated, as are the relativistic corrections to it.

Fulltext pdf (415 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0180.201011b.1135
PACS: 04.20.−q, 04.30.−w, 41.60.−m (all)
DOI: 10.3367/UFNe.0180.201011b.1135
URL: https://ufn.ru/en/articles/2010/11/c/
000287186300003
2-s2.0-79955582024
Citation: Nikishov A I, Ritus V I "Gravitational radiation of systems and the role of their force field" Phys. Usp. 53 1093–1122 (2010)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Никишов А И, Ритус В И «Гравитационное излучение систем и роль их силового поля» УФН 180 1135–1165 (2010); DOI: 10.3367/UFNr.0180.201011b.1135

References (28) ↓ Cited by (6) Similar articles (20)

  1. Zakharov V D Gravitatsionnye Volny v Teorii Tyagoteniya Einshteina (M.: Nauka, 1972); Zakharov V D Gravitational Waves In Einstein’s Theory (New York: Halsted Press, 1973)
  2. Misner S W, Thorne K S, Wheeler J A Gravitation (San Francisco: W.H. Freeman, 1973); Mizner Ch, Torn K, Uiler Dzh Gravitatsiya (M.: Mir, 1977)
  3. Braginsky V V, Caves S M, Thorne K S Phys. Rev. D 15 2047 (1977)
  4. Diambrini Palazzi G, Fargion D Phys. Lett. B 197 302 (1987)
  5. Melissinos A C Nuovo Cimento B 62 190 (1981)
  6. Landau L D, Lifshits E M Teoriya Polya (M.: Nauka, 1988); Landau L D, Lifshitz E M The Classical Theory Of Fields (Oxford: Butterworth-Heinemann, 1994)
  7. Schwinger J Particles, Sources, And Fields (Reading, Mass.: Addison-Wesley, 1970); Shvinger Yu Chastitsy, Istochniki, Polya (M.: Mir, 1973)
  8. Weinberg S Gravitation And Cosmology (New York: Wiley, 1972); Vainberg S Gravitatsiya i Kosmologiya (M.: Mir, 1975)
  9. Nikishov A I, Ritus V I Zh. Eksp. Teor. Fiz. 96 1547 (1989); Nikishov A I, Ritus V I Sov. Phys. JETP 69 876 (1989)
  10. Gal’tsov D V, Grats Yu V Zh. Eksp. Teor. Fiz. 68 777 (1975); Gal’tsov D V, Grats Yu V Sov. Phys. JETP 41 387 (1976)
  11. Nikishov A I, Ritus V I Zh. Eksp. Teor. Fiz. 98 1151 (1990); Nikishov A I, Ritus V I JETP 71 643 (1990)
  12. Gertsenshtein M E Zh. Eksp. Teor. Fiz. 41 113 (1961); Gertsenshtein M E Sov. Phys. JETP 14 84 (1962)
  13. Pustovoit V I, Gertsenshtein M E Zh. Eksp. Teor. Fiz. 42 163 (1962); Pustovoit V I, Gertsenshtein M E Sov. Phys. JETP 15 116 (1962)
  14. Weber J "Gravitation and light" Gravitation And Relativity (Eds H Chiu, W F Hoffmann) (New York: W.A. Benjamin, 1964), Ch. 5; Veber Dzh "Gravitatsiya i svet" Gravitatsiya i Otnositel’nost’ (Pod red. X Tszyu, V Goffmana) (M.: Mir, 1965) p. 374
  15. Nikishov A I, Ritus V I Zh. Eksp. Teor. Fiz. 46 776 (1964); Nikishov A I, Ritus V I Sov. Phys. JETP 19 529 (1964)
  16. Ritus V I Trudy FIAN 111 5 (1979)
  17. Mitskevich N V Fizicheskie Polya v Obshchei Teorii Otnositel’nosti (M.: Nauka, 1969)
  18. Sushkov O P, Khriplovich I B Zh. Eksp. Teor. Fiz. 66 3 (1974); Sushkov O P, Khriplovich I B Sov. Phys. JETP 39 1 (1974)
  19. Zel’dovich Ya B, Popov V S Usp. Fiz. Nauk 105 403 (1971); Zel’dovich Ya B, Popov V S Sov. Phys. Usp. 14 673 (1972)
  20. Barbashov B M, Nesterenko V V Model’ Relyativistskoi Struny v Fizike Adronov (M.: Energoatomizdat, 1987); Barbashov B M, Nesterenko V V Introduction To The Relativistic String Theory (Singapore: World Scientific, 1990)
  21. Turok N Nucl. Phys. B 242 520 (1984)
  22. Bateman H, Erdélyi A Higher Transcendental Functions Vol. 2 (New York: McGraw-Hill, 1954); Beitmen G, Erdeii A Vysshie Transtsendentnye Funktsii Vol. 2 (M.: Nauka, 1966)
  23. Fikhtengol’ts G M Kurs Differentsial’nogo i Integral’nogo Ischisleniya Vol. 3 (M.: Nauka, 1969); Fichtenholz G M Infinite Series: Rudiments (New York: Gordon and Breach, 1970)
  24. Peters P C, Mathews J Phys. Rev. 131 435 (1963)
  25. Peters R S Phys. Rev. D 5 2476 (1972)
  26. Gal’tsov D V, Grats Yu V, Petukhov V I Izluchenie Gravitatsionnykh Voln Elektrodinamicheskimi Sistemami (M.: Izd-vo MGU, 1984)
  27. Peters R S Phys. Rev. D 8 4628 (1973)
  28. Ritus V I Zh. Eksp. Teor. Fiz. 80 1288 (1981); Ritus V I Sov. Phys. JETP 53 659 (1981)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions