Issues

 / 

2009

 / 

July

  

Reviews of topical problems


Energy losses in relativistic plasmas: QCD versus QED

,
Laboratoire de Physique Subatomique et des technologies associees (SUBATECH), Universite de Nantes, 4 rue Alfred Kastler, Nantes, 44307, France

We review the problem of evaluating the energy loss of an ultrarelativistic charged particle crossing a thermally equilibrated high-temperature е+е- or quark — gluon plasma. The average energy loss ΔЕ depends on the particle energy Е and mass М, the plasma temperature Т, the QED (QCD) coupling constant α(αs), and the distance L the particle travels in the medium. Two main mechanisms contribute to the energy loss: elastic collisions and bremsstrahlung. For each contribution, we use simple physical arguments to obtain the functional dependence ΔЕ(Е, М, Т, α(s), L) in different regions of the parameters. The suppression of bremsstrahlung due to the Landau — Pomeranchuk — Migdal effect is relevant in some regions. In addition, radiation by heavy particles is often suppressed for kinematical reasons. Still, when the travel distance L is not too small, and for large enough energies [E ≫ М2/(αТ) in the Abelian case and E ≫ М/ √αs in the non-Abelian case], radiative losses dominate over collisional ones. We rederive the known results and make some new observations. In particular, we emphasize that for light particles (m2 ≪ αT2), the difference in the behavior of ΔЕ(Е, М, Т, α(s), L) in QED and QCD is mostly due to the different problem setting in these two cases. In QED, it is natural to study the energy losses of an electron coming from infinity. In QCD, the quantity of physical interest is the medium-induced energy loss of a parton produced within the medium. In the case of an electron produced within a QED plasma, the medium-induced radiative energy loss ΔErad behaves similarly to ΔErad in QCD (in particular ΔErad ∝ L2 at small L), despite the photon and gluon radiation spectra being drastically different because the bremsstrahlung cones for soft gluons are broader than for soft photons. We also show that the average radiative loss of an ’asymptotic light parton’ crossing a QCD plasma is similar to that of an asymptotic electron crossing a QED plasma. For heavy particles (М2 ≫ αT2), the difference between ΔErad in QED and in QCD is more pronounced, even when the same physical situation is considered.

Fulltext pdf (456 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0179.200907a.0697
PACS: 12.38.Mh, 25.75.−q, 52.27.Ny, 61.85.+p (all)
DOI: 10.3367/UFNe.0179.200907a.0697
URL: https://ufn.ru/en/articles/2009/7/a/
000272512700001
2-s2.0-70449372516
2009PhyU...52..659P
Citation: Peigné S, Smilga A V "Energy losses in relativistic plasmas: QCD versus QED" Phys. Usp. 52 659–685 (2009)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Пенье С, Смилга А В «Энергетические потери в релятивистской плазме: квантовая хромодинамика в сравнении с квантовой электродинамикой» УФН 179 697–726 (2009); DOI: 10.3367/UFNr.0179.200907a.0697

References (56) Cited by (61) Similar articles (20) ↓

  1. I.M. Dremin, A.V. Leonidov “The quark — gluon mediumPhys. Usp. 53 1123–1149 (2010)
  2. I.Ya. Aref’eva “Holographic approach to quark—gluon plasma in heavy ion collisionsPhys. Usp. 57 527–555 (2014)
  3. A.V. Leonidov “Dense gluon matter in nuclear collisionsPhys. Usp. 48 323–343 (2005)
  4. A.I. Akhiezer, N.F. Shul’ga “Influence of multiple scattering on the radiation of relativistic particles in amorphous and crystalline mediaSov. Phys. Usp. 30 197–219 (1987)
  5. E.L. Feinberg “Hadron clusters and half-dressed particles in quantum field theorySov. Phys. Usp. 23 629–650 (1980)
  6. M.L. Ter-Mikhaelyan “Electromagnetic radiative processes in periodic media at high energiesPhys. Usp. 44 571–596 (2001)
  7. V.A. Bazylev, N.K. Zhevago “Channeling of fast particles and associated phenomenaSov. Phys. Usp. 33 (12) 1021–1046 (1990)
  8. I.I. Roizen, E.L. Feinberg, O.D. Chernavskaya “Color deconfinement and subhadronic matter: phase states and the role of constituent quarksPhys. Usp. 47 427–446 (2004)
  9. F.F. Komarov “Nano- and microstructuring of solids by swift heavy ionsPhys. Usp. 60 435–471 (2017)
  10. I.L. Rozental’, Yu.A. Tarasov “Hydrodynamic theory of multiple process and the physics of the quark-gluon plasmaPhys. Usp. 36 (7) 572–586 (1993)
  11. V.I. Vysotskii, R.N. Kuz’min “Channeling of neutral particles and photons in crystalsSov. Phys. Usp. 35 (9) 725–746 (1992)
  12. P.Yu. Babenko, A.N. Zinoviev, A.P. Shergin “Stopping and scattering of keV-energy atoms in matterPhys. Usp. 67 1000–1021 (2024)
  13. F.F. Komarov “Defect and track formation in solids irradiated by superhigh-energy ionsPhys. Usp. 46 1253–1282 (2003)
  14. A.E. Bondar, P.N. Pakhlov, A.O. Poluektov “Observation of CP violation in B-meson decaysPhys. Usp. 50 669–690 (2007)
  15. G.V. Dedkov “Interatomic potentials of interactions in radiation physicsPhys. Usp. 38 877–910 (1995)
  16. A.F. Tulinov “Influence of the crystal lattice on some atomic and nuclear processesSov. Phys. Usp. 8 864–872 (1966)
  17. M.I. Ryazanov “Bremsstrahlung and pair production at ultrahigh energies in condensed amorphous matterSov. Phys. Usp. 17 815–825 (1975)
  18. S.G. Turyshev “Experimental tests of general relativity: recent progress and future directionsPhys. Usp. 52 1–27 (2009)
  19. B.M. Bolotovskii, S.N. Stolyarov “Current status of the electrodynamics of moving media (infinite media)Sov. Phys. Usp. 17 875–895 (1975)
  20. N.N. Achasov, G.N. Shestakov “Light scalar mesons in photon—photon collisionsPhys. Usp. 54 799–828 (2011)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions